OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 25, Iss. 11 — Nov. 1, 2007
  • pp: 3381–3387

Optical Front-Ends to Generate Optical Millimeter-Wave Signal in Radio-Over-Fiber Systems With Different Architectures

Lin Chen, Shuangchun C. Wen, Ying Li, Jing He, Hong Wen, Yufeng Shao, Ze Dong, and Yazhi Pi

Journal of Lightwave Technology, Vol. 25, Issue 11, pp. 3381-3387 (2007)


View Full Text Article

Acrobat PDF (710 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We have proposed and experimentally demonstrated three different optical front-ends to implement in wavelength-division-multiplexing (WDM) radio-over-fiber (ROF) networks to minimize the cost of the ROF system. When the number of WDM channels is small, such as smaller than four channels, the simplest front-end to generate WDM optical millimeter (mm)-wave signals is to use only broadband direct-modulation laser (DML) for each WDM channel. In this case, the expensive external modulator can be removed. However, when the number of WDM channels is large, such as larger than four, the frond-end to generate WDM optical mm-wave signals can be realized by using an external modulator to upconvert simultaneously all channels after the WDM channel signals are multiplexed. In this way, the cost of the expensive external modulator will be shared by all channels. For seamless integration of WDM signals that come from the existing backbone with ROF system, a broadband external modulator can be used to upconvert WDM signals.

© 2007 IEEE

Citation
Lin Chen, Shuangchun C. Wen, Ying Li, Jing He, Hong Wen, Yufeng Shao, Ze Dong, and Yazhi Pi, "Optical Front-Ends to Generate Optical Millimeter-Wave Signal in Radio-Over-Fiber Systems With Different Architectures," J. Lightwave Technol. 25, 3381-3387 (2007)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-25-11-3381


Sort:  Year  |  Journal  |  Reset

References

  1. A. Wiberg, P. P. Millán, M. V. Andrés, P. A. Andrekson, P. O. Hedekvist, "Fiber-optic 40 GHz mm-wave link with 2.5 Gb/s data transmission," IEEE Photon. Technol. Lett. 17, 1938-1940 (2005).
  2. J. Yu, Z. Jia, G. K. Chang, "All-optical mixer based on cross-absorption modulation in electro-absorption modulator ," IEEE Photon. Technol. Lett. 17, 2421-2423 (2005).
  3. V. Francesco, M. Sisto, W. Rusch, S. LaRochelle, "Electrical-to-optical conversion of OFDM 802.11g/a signals by direct current modulation of semiconductor optical amplifiers," Proc. MWP Int. Top. Meeting (2006) pp. 1-4.
  4. H.-S. Ryu, Y.-K. Seo, W.-Y. Choi, "Dispersion-tolerant transmission of 155-Mb/s data at 17 GHz using a 2.5-Gb/s-grade DFB laser with wavelength-selective gain from an FP laser diode," IEEE Photon. Technol. Lett. 16, 1942-1944 (2004).
  5. D. Wake, C. R. Lima, P. A. Davies, "Transmission of 60 GHz signals over 100 km of optical fiber using a dual-mode semiconductor laser source," IEEE Photon. Technol. Lett. 8, 578-580 (1996).
  6. J. Yu, Z. Jia, L. Yi, Y. Su, G.-K. Chang, T. Wang, "Optical millimeter-wave generation or up-conversion using external modulators," IEEE Photon. Technol. Lett. 18, 265-267 (2006).
  7. Z. Jia, J. Yu, G.-K. Chang, "A full-duplex radio-over fiber system based on optical carrier suppression and reuse ," IEEE Photon. Technol. Lett. 18, 1726-1728 (2006).
  8. U. Glies, S. Nøskov, T. N. Nielsen, "Chromatic dispersion in fiber-optic microwave and millimeter-wave links," IEEE Trans. Microw. Theory Tech. 44, 1716-1724 (1996).
  9. G. H. Smith, D. Novak, Z. Ahmed, "Overcome chromatic-dispersion effects in fiber-wireless systems incorporating external modulators ," IEEE Trans. Microw. Theory Tech. 45, 1410-1415 (1997).
  10. M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, G. Edvell, "Transmission improvement in fiber wireless links using fiber Bragg gratings," IEEE Photon. Technol. Lett. 17, 190-192 (2005).
  11. J. M. Fuster, J. Marti, J. L. Corral, V. Polo, F. Ramos, "Generalized study of dispersion-induced power penalty mitigation techniques in millimeter-wave fiber-optic links," J. Lightw. Technol. 18, 933-940 (2000).
  12. C. K. Sun, R. J. Orazi, S. A. Pappert, "Efficient microwave frequency conversion using photonic link signal mixing," IEEE Photon. Technol. Lett. 8, 154-156 (1996).
  13. H.-J. Song, J.-S. Lee, J.-I. Song, "Error-free simultaneous all-optical upconversion of WDM radio-over-fiber signals," IEEE Photon. Technol. Lett. 17, 1731-1733 (2005).
  14. J. Yu, J. Gu, X. Liu, Z. Jia, G.-K. Chang, "Seamless integration of an 8 × 2.5 Gb/s WDM-PON and radio-over-fiber using all-optical up-conversion based on Raman-assisted FWM," IEEE Photon. Technol. Lett. 17, 1986-1988 (2005).
  15. C. Kim, I. Kim, G. Li, M. R. Lange, T. E. Dimmick, P. Langlois, B. Reid, "Optical microwave/millimeter-wave links using direct modulation of two-section gain-coupled DFB lasers," IEEE Photon. Technol. Lett. 17, 1734-1736 (2005).
  16. Z. Jia, J. Yu, G. K. Chang, "All-optical 16 × 2.5 Gb/s WDM signal simultaneous up-conversion based on XPM in an NOLM in ROF Systems," IEEE Photon. Technol. Lett. 17, 2724-2726 (2005).
  17. A. Kaszubowska, L. Hu, L. P. Barry, "Remote downconversion with wavelength reuse for the radio/fiber uplink connection," IEEE Photon. Technol. Lett. 18, 562-564 (2006).
  18. M. Attygalle, C. Lim, A. Nirmalathas, "Extending optical transmission distance in fiber wireless links using passive filtering in conjunction with optimized modulation," J. Lightw. Technol. 24, 1703-1709 (2006).
  19. J. J. O'Reilly, P. M. Lane, R. Heidemann, R. Hofstetter, "Optical generation of very narrow linewidth millimetre wave signals," Electron. Lett. 28, 2309-2311 (1992).
  20. A. Nirmalathas, D. Novak, C. Lim, R. B. Waterhouse, "Wavelength reuse in the WDM optical interface of a millimeter-wave fiber-wireless antenna base station," IEEE Trans. Microw. Theory Tech. 49, 22006-2009 (2001).
  21. G. Qi, J. Yao, J. Seregelyi, S. Paquet, C. Belisle, "Optical generation and distribution of continuously tunable millimeter-wave signals using an optical phase modulator," J. Lightw. Technol. 23, 2687-2695 (2005).
  22. L. Chen, H. Wen, S. Wen, "A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection," IEEE Photon. Technol. Lett. 18, 2056-2058 (2006).
  23. L. Chen, Y. Shao, X. Lei, H. Wen, S. Wen, "A novel radio-over-fiber system with wavelength reuse for upstream data connection," IEEE Photon. Technol. Lett. 19, 387-389 (2007).
  24. J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, G. K. Chang, "A DWDM optical mm-wave generation for ROF downstream link using optical phase modulator and optical interleaver," IEEE Photon. Technol. Lett. 18, 1418-1420 (2006).
  25. J. Yu, Z. Jia, T. Wang, G.-K. Chang, "A novel radio-over-fiber configuration using optical phase modulator to generate an optical mm-wave and centralized lightwave for uplink connection," IEEE Photon. Technol. Lett. 19, 140-142 (2007).
  26. G. Zhou, X. Zhang, J. Yao, K. Wu, R. Kashyap, "A novel photonic frequency down-shifting technique for millimeter-wave-band radio-over-fiber systems," IEEE Photon. Technol. Lett. 17, 130-134 (2005).
  27. P. Horvath, I. Frigyes, "Effects of the nonlinearity of a Mach–Zehnder modulator on OFDM radio-over-fiber transmission," IEEE Commun. Lett. 9, 921-923 (2005).
  28. H. H. Lu, W. S. Tsai, H. C. Peng, Y. J. Ji, "A comparison between optical SSB transmitter-filter in a full-duplex radio-on-fiber transport system," IEEE Commun. Lett. 9, 649-651 (2005).
  29. T. S. Cho, C. Yun, J. I. Song, K. Kim, "Analysis of CNR penalty of radio-over-fiber systems including the effects of phase noise from laser and RF oscillator," J. Lightw. Technol. 23, 4093-4100 (2005).
  30. H. H. Lu, S.-J. Tzeng, Y.-L. Liu, "Intermodulation distortion suppression in a full-duplex radio-on-fiber ring network ," IEEE Photon. Technol. Lett. 16, 602-604 (2004).
  31. P. K. Tang, L. C. Ong, A. Alphones, B. Luo, M. Fujise, "PER and EVM measurements of a radio-over-fiber network for cellular and WLAN system applications ," J. Lightw. Technol. 22, 2370-2376 (2004).
  32. A. Murakoshi, K. Tsukamoto, S. Komaki, "High-performance RF signals transmission in SCM/WDMA radio-on-fiber bus link using optical FM method in presence of optical beat interference," IEEE Trans. Microw. Theory Tech. 54, 2967-972 (2006).
  33. Y. L. Guennec, G. Maury, J. Yao, B. Cabon, "New optical microwave up-conversion solution in radio-over-fiber networks for 60-GHz wireless applications," J. Lightw. Technol. 24, 1277-1282 (2006).
  34. M. Bakaul, A. Nirmalathas, C. Lim, "Hybrid multiplexing of multiband optical access technologies toward an integrated DWDM network ," IEEE Photon. Technol. Lett. 18, 2311-2313 (2006).
  35. C.-T. Lin, W.-R. Peng, P.-C. Peng, J. Chen, C.-F. Peng, B. S. Chiou, S. Chi, "Simultaneous generation of baseband and radio signals using only one single-electrode Mach–Zehnder modulator with enhanced linearity," IEEE Photon. Technol. Lett. 18, 2481-2483 (2006).
  36. J. Yao, G. Maury, Y. Guennec, B. Cabon, "All-optical subcarrier frequency conversion using an electrooptic phase modulator," IEEE Photon. Technol. Lett. 17, 2427-2429 (2005).
  37. M. M. Sisto, S. LaRochelle, L. A. Rusch, "Carrier-to-noise ratio optimization by modulator bias control in radio-over-fiber links ," IEEE Photon. Technol. Lett. 18, 1840-1842 (2006).
  38. T.-S. Cho, K. Kim, "Effect of third-order intermodulation on radio-over-fiber systems by a dual-electrode Mach–Zehnder modulator with ODSB and OSSB signals," J. Lightw. Technol. 24, 2052-2058 (2006).
  39. G.-K. Chang, J. Yu, Z. Jia, J. Yu, "Novel optical wireless access network architecture for providing broadband wireless and wired services," Optical Fiber Commun. Conf., National Fiber Optic Engineers Conf. AnaheimCA (2006) Paper OFM1.
  40. X. Zhang, B. Liu, J. Yao, K. Wu, R. Kashyap, "A novel millimeter-wave-band radio-over-fiber system with dense wavelength-division multiplexing bus architecture," IEEE Trans. Microw. Theory Tech. 54, 929-937 (2006).
  41. L. S. Yan, X. S. Yao, C. Yu, "40 Gb/s transmission over 25 km of negative-dispersion fiber using asymmetric narrow-band filtering of a commercial directly modulated laser," IEEE Photon. Technol. Lett. 17, 1322-1324 (2005).
  42. K. Soto, S. Kuwahara, A. Hirano, M. Yoneyama, Y. Miyamoto, "4 × 40 Gb/s dense WDM transmission over 40 km SMF using directly modulated DFB lasers," Eur. Conf. Optical Commun. (ECOC) StockholmSweden (2004) Paper We2.6.6.
  43. J. H. Schaffner, D. Yap, Polarization-insensitive, electro-optic modulator U.S. Patent, 5 751 867 (1998).
  44. T. Ishikawa, "Polarisation-independent $\hbox{LiNbO}_{3}$ waveguide optical modulator," Electron. Lett. 28, 566-567 (1992).
  45. T. Gase, "Polarization-independent phase modulator," Proc. OFC Tech. Dig. (1995) pp. 282-283.
  46. J. Ma, C. Yu, Z. Zhou, J. Yu, "Optical mm-wave generation by using external modulator based on optical carrier suppression ," Opt. Commun. 268, 51-57 (2006).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited