OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 25, Iss. 11 — Nov. 1, 2007
  • pp: 3602–3609

Fiber-Optic Current Sensor for Electrowinning of Metals

Klaus Bohnert, Philippe Gabus, Jürgen Nehring, Hubert Brändle, and Martin Georg Brunzel

Journal of Lightwave Technology, Vol. 25, Issue 11, pp. 3602-3609 (2007)

View Full Text Article

Acrobat PDF (408 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


A highly accurate fiber-optic current sensor for direct currents up to 500 kA is presented. Applications include the control of the electrolysis process for the production of metals such as aluminum, copper, zinc, magnesium, and others. The sensor offers significant advantages with regard to performance and ease of use compared to state-of-the-art Hall-effect-based current transducers. The sensor makes use of the Faraday effect in an optical fiber loop around the current-carrying bus bars. A novel scheme of a polarization-rotated reflection interferometer and fiber gyroscope technology is used to measure the magneto-optic phase shifts. An appropriate technique has been developed for packaging the sensing fiber in a flexible strip of fiber-reinforced epoxy for loop diameters of up to several meters. Sensor accuracy and repeatability are well within ±0.1% over a wide range of currents and temperatures. The sensor calibration is valid, regardless of the given magnetic field distribution, and remains stable under repeated manipulation of the flexible sensing strip.

© 2007 IEEE

Klaus Bohnert, Philippe Gabus, Jürgen Nehring, Hubert Brändle, and Martin Georg Brunzel, "Fiber-Optic Current Sensor for Electrowinning of Metals," J. Lightwave Technol. 25, 3602-3609 (2007)

Sort:  Year  |  Journal  |  Reset


  1. A. Papp, H. Harms, "Magnetooptical current transformer. 1: Principles," Appl. Opt. 19, 3729-3734 (1980).
  2. P.-A. Nicati, P. Robert, "Stabilized current sensor using a Sagnac interferometer," J. Phys. E, Sci. Instrum. 21, 791-796 (1988).
  3. S. Donati, V. Annovazzi-Lodi, T. Tambasso, "Magneto-optical fiber sensor for electrical industry: Analysis of performance," Proc. Inst. Electr. Eng. 135, 372-382 (1988).
  4. G. Frosio, R. Dändliker, "Reciprocal reflection interferometer for a fiber-optic Faraday current sensor," Appl. Opt. 33, 6111-6122 (1994).
  5. X. Fang, A. Wang, R. G. May, R. O. Claus, "A reciprocal-compensated fiber-optic electric current sensor," J. Lightw. Technol. 12, 1882-1890 (1994).
  6. Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, D. A. Jackson, "Recent progress in optical current sensing techniques," Rev. Sci. Instrum. 66, 3097-3111 (1995).
  7. P. Menke, T. Bosselmann, "Temperature compensation in magneto-optic ac current sensors using an intelligent ac–dc signal evaluation," J. Lightw. Technol. 13, 1362-1370 (1995).
  8. J. Blake, P. Tantaswadi, R. T. de Carvalho, "In-line Sagnac interferometer current sensor," IEEE Trans. Power Del. 11, 116-121 (1996).
  9. H. Lin, W.-W. Lin, M.-H. Chen, "Modified in-line Sagnac interferometer with passive demodulation technique for environmental immunity of a fiber-optic current sensor," Appl. Opt. 38, 2760-2766 (1999).
  10. F. Brifford, L. Thevenaz, P. Robert, "Performance and stability of a field fibre optics current sensor," Tech. Dig. 14th Opt. Fiber Sensors Conf. (2000) pp. 344-347.
  11. K. Bohnert, P. Gabus, J. Nehring, H. Brändle, "Temperature and vibration insensitive fiber-optic current sensor," J. Lightw. Technol. 20, 267-276 (2002).
  12. K. Kurosawa, Y. Tashiro, N. Ochi, K. Kishimoto, H. Okada, W. Kayamori, "Development of optical current transducer using flint glass fiber for digital substation system ," Tech. Dig. 16th Opt. Fiber Sensors Conf. (2003) pp. 324-327.
  13. M. Takahashi, K. Sasaki, A. Ohno, Y. Hirata, K. Terai, "Sagnac interferometer-type fiber-optic current sensor using single-mode fiber down leads ," Tech. Dig. 16th Opt. Fiber Sensors Conf. (2003) pp. 756-759.
  14. J. Haywood, I. Bassett, M. Martar, "Application of the NIMI technique to the 3 × 3 Sagnac fibre optical current sensor—Experimental results," Tech. Dig. 15th Opt. Fiber Sensors Conf. (2002) pp. 553-556.
  15. A. Enokihara, M. Izutsu, T. Sueta, "Optical fiber sensors using the method of polarization-rotated reflection," J. Lightw. Technol. LT-5, 1584-1590 (1987).
  16. G. Frosio, Reciprocal interferometers for fiber-optic Faraday current sensors Ph.D. dissertation Univ. NeuchatelNeuchatelSwitzerland (1992).
  17. R. A. Bergh, H. C. Lefevre, H. J. Shaw, "An overview of fiber-optic gyroscopes," J. Lightw. Technol. LT-2, 91-107 (1984).
  18. H. Lefevre, The Fiber-Optic Gyroscope (Artech House, 1993).
  19. R. C. Jones, "A new calculus for the treatment of optical systems. I. Description and discussion of the calculus ," J. Opt. Soc. Amer. 31, 488-493 (1941).
  20. A. H. Rose, S. M. Etzel, C. M. Wang, "Verdet constant dispersion in annealed optical fiber current sensors," J. Lightw. Technol. 15, 803-807 (1997).
  21. R. Ulrich, S. C. Rashleigh, W. Eickhoff, "Bending-induced birefringence in single-mode fibers," Opt. Lett. 5, 273-275 (1980).
  22. H. C. Lefevre, "Single-mode fibre fractional wave devices and polarisation controllers," Electron. Lett. 16, 778-780 (1980).
  23. D. Tang, A. H. Rose, G. W. Day, S. M. Etzel, "Annealing of linear birefringence in single-mode fiber coils: Applications to optical fiber current sensors," J. Lightw. Technol. 9, 1031-1037 (1991).
  24. Y. Namihira, "Opto-elastic constant in single-mode optical fibers," J. Lightw. Technol. LT-3, 1078-1083 (1983).
  25. S. X. Short, J. U. de Arruda, A. A. Tselikov, J. N. Blake, "Elimination of birefringence induced scale factor errors in the in-line Sagnac interferometer current sensor," J. Lightw. Technol. 16, 1844-1850 (1998).
  26. H. Rose, Z. B. Ren, G. W. Day, "Twisting and annealing of optical fiber for current sensors," J. Lightw. Technol. 14, 2492-2498 (1996).
  27. R. Ulrich, A. Simon, "Polarization optics of twisted single-mode fibers," Appl. Opt. 18, 2241-2251 (1979).
  28. R. I. Laming, D. N. Payne, "Electric current sensors employing spun highly birefringent optical fibers," J. Lightw. Technol. 7, 2084-2094 (1989).
  29. K. Kurosawa, S. Yoshida, K. Sakamoto, "Polarization properties of the flint glass fiber," J. Lightw. Technol. 13, 1378-1383 (1995).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited