Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 25,
  • Issue 12,
  • pp. 3739-3747
  • (2007)

An Optical Interconnect Transceiver at 1550 nm Using Low-Voltage Electroabsorption Modulators Directly Integrated to CMOS

Not Accessible

Your library or personal account may give you access

Abstract

A low-voltage, 90-nm CMOS optical interconnect transceiver operating at 1550-nm optical wavelength is presented. This is the first demonstration of a novel optoelectronic modulator architecture (the quasi-waveguide angled-facet electroabsorption modulator) in a system. It features a simple electronic packaging via flip-chip bonding to silicon. Devices have a broad optical bandwidth, are arrayed two dimensionally, and feature surface normal, spatially separated, and misalignment-tolerant optical ports. The modulators are driven with a novel pulsed-cascode driver capable of supplying an output-voltage swing of 2 V (twice the nominal 1-V CMOS supply) without overstressing thin-oxide core CMOS devices. At the receiver side, a sensitivity of $-$15.2 dBm is obtained with an integrating/double-sampling front end. The transceiver includes clock generation and recovery circuitry that enables a data serialization factor of five. At a maximum data rate of 1.8 Gb/s, the optical transmitter, receiver, and clocking circuitry consume 12.6, 4.5, and 6.5 mW, respectively, for a total link electrical power dissipation of 23.6 mW. To the best of our knowledge, this is the first demonstration of an interconnect transceiver operating at 1550 nm with a III–V output device directly integrated to the CMOS.

© 2007 IEEE

PDF Article
More Like This
Ultra-low-energy all-CMOS modulator integrated with driver

Xuezhe Zheng, Jon Lexau, Ying Luo, Hiren Thacker, Thierry Pinguet, Attila Mekis, Guoliang Li, Jing Shi, Philip Amberg, Nathaniel Pinckney, Kannan Raj, Ron Ho, John E. Cunningham, and Ashok V. Krishnamoorthy
Opt. Express 18(3) 3059-3070 (2010)

Low-voltage, high-extinction-ratio, Mach-Zehnder silicon optical modulator for CMOS-compatible integration

Jianfeng Ding, Hongtao Chen, Lin Yang, Lei Zhang, Ruiqiang Ji, Yonghui Tian, Weiwei Zhu, Yangyang Lu, Ping Zhou, and Rui Min
Opt. Express 20(3) 3209-3218 (2012)

Flip-chip integrated silicon Mach-Zehnder modulator with a 28nm fully depleted silicon-on-insulator CMOS driver

Zheng Yong, Stefan Shopov, Jared C. Mikkelsen, Robert Mallard, Jason C.C. Mak, Sorin P. Voinigescu, and Joyce K. S. Poon
Opt. Express 25(6) 6112-6121 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved