OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 25, Iss. 2 — Feb. 1, 2007
  • pp: 490–498

A MEMS VOA Using Electrothermal Actuators

Chengkuo Lee

Journal of Lightwave Technology, Vol. 25, Issue 2, pp. 490-498 (2007)


View Full Text Article

Acrobat PDF (993 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

A comprehensive study of electrothermally driven microelectromechanical system (MEMS) variable optical attenuator (VOA) devices using an H-shaped structure is presented in this paper. Based on its unique structural design, a retroreflection-type VOA of smaller footprint is realized. The repeatability and stability of the static and transient characteristics of attenuation behavior at various ambient temperatures are characterized. The fluctuation of attenuation curves under the same driving voltage at the same ambient temperatures is less than ±0.1 dB. Again, comparing the attenuation curves measured at 25 °C to 75 °Cand at 25 °C to 12.5 °C, the deviation of attenuation under the same driving voltage is within the 0.6-dB range. Within the 40-dB attenuation range, the measured switching time from nonattenuation state to a particular attenuation state or between two attenuation states is less than 10 ms. This electrothermally actuated MEMS VOA also demonstrates the state-of-the-art dynamic attenuation stability that complies with the Telecordia GR1221 regulations, where the dynamic fluctuation of attenuation at 20 dB is less than ±0.36 dB under a vibration testing condition of 20 G periodical shocks with frequency from 20 Hz to 2 kHz.

© 2007 IEEE

Citation
Chengkuo Lee, "A MEMS VOA Using Electrothermal Actuators," J. Lightwave Technol. 25, 490-498 (2007)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-25-2-490

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited