OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 25, Iss. 6 — Jun. 1, 2007
  • pp: 1466–1473

An Adjustable Gain-Clamped Semiconductor Optical Amplifier (AGC-SOA)

C. Michie, A. E. Kelly, I. Armstrong, I. Andonovic, and C. Tombling

Journal of Lightwave Technology, Vol. 25, Issue 6, pp. 1466-1473 (2007)

View Full Text Article

Acrobat PDF (567 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


The operation of a semiconductor optical amplifier (SOA)-ring laser-based subsystem, with the capability to provide adjustable gain-clamped operation, will be described, and preliminary characterization results will be presented. The device uses two SOAs in a ring-cavity topology: one to amplify the signal and the other to control the gain. This type of subsystem finds applications in packet-based dynamic systems where it may be used for power equalization and linear amplification.

© 2007 IEEE

C. Michie, A. E. Kelly, I. Armstrong, I. Andonovic, and C. Tombling, "An Adjustable Gain-Clamped Semiconductor Optical Amplifier (AGC-SOA)," J. Lightwave Technol. 25, 1466-1473 (2007)

Sort:  Year  |  Journal  |  Reset


  1. P. Risbood, C. Nuzman, N. Nithi, S. Patel, "ROADM enabled optimization in WDM rings," Optical Fiber Commun. AnaheimCA (2005) Paper OWG1.
  2. R. P. Davey, D. B. Payne, "The future of optical transmission in access and metro networks—An operator's view ," Proc. ECOC (2005) pp. 53-56.
  3. J. R. Stern, "Optical wideband subscriber loops and local area networks in the UK," Proc. ICC (1984) pp. 884-887.
  4. R. P. Davey, P. Healey, I. Hope, P. Watkinson, D. B. Payne, O. Marmur, J. Ruhmann, Y. Zuiderveld, "DWDM reach extension of a GPON to 135 km," J. Lightw. Technol. 24, 29-31 (2006).
  5. N. Suzkuki, J. Nakagawa, "First demonstration of full burst optical amplified GE-PON uplink with extended system budget of up to 128 ONU splits and 58 km reach," Proc. ECOC (2005) pp. 141-142.
  6. P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, R. Moore, "Reflective SOAs for spectrally sliced WDM-PONs," Proc. OFC (2002) pp. 352-353.
  7. J. F. Massicott, S. D. Willson, R. Wyatt, J. R. Armitage, R. Kashyap, D. Williams, R. A. Lobbett, "1480 nm pumped erbium doped fibre amplifier with all optical automatic gain control ," Electron. Lett. 30, 962-964 (1994).
  8. J. Massicott, C. Lebre, R. Wyatt, R. Kashyap, D. Williams, A. Yu, "Low noise, all-optical gain controlled Er3+ doped fibre amplifier using asymmetric control laser cavity design," Electron. Lett. 32, 816-817 (1996).
  9. J. Bryce, G. Yoffe, Y. Zhao, R. Minasian, "Tunable, gain-clamped EDFA incorporating chirped fibre Bragg grating," Electron. Lett. 34, 1680-1681 (1998).
  10. T. C. Teyo, N. S. M. Shah, M. K. Leong, P. Poopalan, H. Ahmad, "Comparison between regenerative-feedback and cofeedback gain-clamped EDFA," IEEE Photon. Technol. Lett. 14, 1255-1257 (2002).
  11. M. Cai, X. Liu, J. Cui, P. Tang, J. Peng, "Study on noise characteristic of gain-clamped erbium-doped fiber-ring lasing amplifier ," IEEE Photon. Technol. Lett. 9, 1093-1095 (1997).
  12. S. Arahira, Y. Ogawa, "160-Gb/s all-optical encoding experiments by four-wave mixing in a gain-clamped SOA with assist-light injection," IEEE Photon. Technol. Lett. 16, 653-655 (2004).
  13. H. Kim, J. Lee, I. Yun, S. Kim, H. Shin, S. Hwang, Y. Oh, C. Shim, "A gain clamped SOA with distributed bragg reflectors fabricated under both ends of active waveguide with different lengths," IEEE Photon. Technol. Lett. 16, 999-1001 (2004).
  14. J. C. Simon, P. Doussiere, P. Lamouler, I. Valiente, F. Riou, "Travelling wave semiconductor optical amplifier with reduced nonlinear distortions," Electron. Lett. 30, 49-50 (1994).
  15. D. Wolfson, S. L. Danielsen, C. Joergensen, B. Mikkelsen, K. E. Stubkjaer, "Detailed theoretical investigation of the input power dynamic range for gain-clamped semiconductor optical amplifier gates at 10 Gb/s," IEEE Photon. Technol. Lett. 10, 1241-1243 (1998).
  16. D. A. Francis, S. P. DiJaili, J. D. Walker, "A single chip linear optical amplifier," Proc. Opt. Fiber Commun. Conf. (2001) pp. PD13-1-PD13-3.
  17. C.-Y. Jin, Y.-Z. Huang, L.-J. Yu, S.-L. Deng, "Detailed model and investigation of gain saturation and carrier spatial hole burning for a semiconductor optical amplifier with gain clamping by a vertical laser field," IEEE J. Quantum Electron. 40, 513-518 (2004).
  18. A. E. Kelly, C. Michie, I. Armstrong, I. Andonovic, C. Tombling, J. McGeough, B. C. Thomsen, "High performance semiconductor optical amplifier modules at 1300 nm," IEEE Photon. Technol. Lett. 18, 2674-2676 (2006).
  19. E. Desurvure, "Erbium-doped fiber amplifiers, principles and applications," Wiley Series in Telecommunications and Signal Processing New YorkWileyNew York.
  20. D. D. Marcenac, A. E. Kelly, D. Nesset, D. A. O. Davies, ?>, "Bandwidth enhancement of wavelength conversion by semiconductor optical amplifier cascade ," Electron. Lett. 31, 1442-1443 (1995).
  21. G. Onishchukov, V. Lokhnygin, A. Shipulin, P. Riedel, "10 Gb/s transmission over 1500 km with semiconductor optical amplifiers," Electron. Lett. 34, 1597-1598 (1998).
  22. R. Ramaswamay, K. Sivarajan, Optical Networks (Morgan Kaufmann, 1994).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited