OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 25, Iss. 6 — Jun. 1, 2007
  • pp: 1495–1502

System-Performance Analysis of Optimized Gain-Switched Pulse Source Employed in 40- and 80-Gb/s OTDM Systems

Prince M. Anandarajah, Aisling M. Clarke, Celine Guignard, Laurent Bramerie, Liam P. Barry, John D. Harvey, and Jean Claude Simon

Journal of Lightwave Technology, Vol. 25, Issue 6, pp. 1495-1502 (2007)


View Full Text Article

Acrobat PDF (1031 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

The development of ultrashort optical pulse sources, exhibiting excellent temporal and spectral profiles, will play a crucial role in the performance of future optical time division multiplexed (OTDM) systems. In this paper, we demonstrate the difference in performance in 40- and 80-Gb/s OTDM systems between optical pulse sources based on a gain-switched laser whose pulses are compressed by a nonlinearly and linearly chirped fiber Bragg grating. The results achieved show that nonlinear chirp in the wings of the pulse leads to temporal pedestals formed on either side of the pulse when using the linearly chirped grating, whereas with the nonlinearly chirped grating, pedestals are essentially eliminated. In an OTDM system, these pedestals cause coherent interaction between neighboring channels, resulting in intensity fluctuations that lead to a power penalty of 1.5 dB (40 Gb/s) and 3.5 dB (80 Gb/s) in comparison to the case where the nonlinearly chirped grating is used. Simulations carried out with the aid of Virtual Photonics Inc. verify the results achieved.

© 2007 IEEE

Citation
Prince M. Anandarajah, Aisling M. Clarke, Celine Guignard, Laurent Bramerie, Liam P. Barry, John D. Harvey, and Jean Claude Simon, "System-Performance Analysis of Optimized Gain-Switched Pulse Source Employed in 40- and 80-Gb/s OTDM Systems," J. Lightwave Technol. 25, 1495-1502 (2007)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-25-6-1495


Sort:  Year  |  Journal  |  Reset

References

  1. M. Saruwatari, "All-optical signal processing for terabit/second optical transmission," IEEE J. Sel. Topics Quantum Electron. 6, 1363-1374 (2000).
  2. V. Mikhailov, P. Bayvel, I. Lealman, R. Wyatt, "Compact and fully packaged fibre grating laser-based RZ pulse source for 40 Gb/s OTDM transmission systems," Proc. Eur. Conf. Opt. Commun. (2001) pp. 336-337.
  3. D. M. Spirit, A. D. Ellis, P. E. Barnsley, "Optical time division multiplexing: Systems and networks," IEEE Commun. Mag. 32, 56-62 (1994).
  4. P. Anandarajah, L. P. Barry, A. Kaszubowska, "Performance issues associated with WDM optical systems using self-seeded gain switched pulse sources due to mode partition noise effects," IEEE Photon. Technol. Lett. 14, 1202-1204 (2002).
  5. P. L. Mason, A. Wonfor, D. D. Marcenac, D. G. Moodie, M. C. Brierley, R. V. Penty, I. H. White, S. Bouchoule, "The effects of pedestal suppression on gain-switched laser sources for 40 Gb/s OTDM transmission ," Proc. 10th Annu. Meeting IEEE LEOS (1997) pp. 289-290.
  6. L. P. Barry, P. Guignard, J. Debeau, R. Boittin, M. Bernard, "A high-speed optical star network using TDMA and all-optical demultiplexing techniques ," IEEE J. Sel. Areas Commun. 14, 1030-1038 (1996).
  7. M. Nakzawa, "Solitons for breaking barriers to terabit/second WDM and OTDM transmission in the next millennium ," IEEE J. Sel. Topics Quantum Electron. 6, 1332-1343 (2000).
  8. S. Arahira, Y. Ogawa, "160 Gb/s OTDM signal source with 3R function utilizing ultrafast mode-locked laser diodes and modified NOLM," IEEE Photon. Technol. Lett. 17, 992-994 (2005).
  9. K. Taira, K. Kikuchi, "Subpicosecond pulse generation using an electroabsorption modulator and a double-stage pulse compressor," IEEE Photon. Technol. Lett. 15, 1288-1290 (2003).
  10. L. P. Barry, R. F. O'Dowd, J. Debeau, R. Boittin, "Tunable transform limited pulse generation using self-injection locking of an FP laser ," IEEE Photon. Technol. Lett. 5, 1132-1134 (1993).
  11. K. Y. Lau, "Gain switching of semiconductor injection lasers," Appl. Phys. Lett. 52, 257-259 (1988).
  12. H. F. Liu, S. Oshiba, Y. Ogawa, Y. Kawai, "Method of generating nearly transform-limited pulses from gain-switched distributed-feedback laser diodes and its application to soliton transmission," Opt. Lett. 17, 64-66 (1992).
  13. D.-S. Seo, D. Y. Kim, H.-F. Liu, "Timing jitter reduction of gain-switched DFB laser by external injection seeding," Electron. Lett. 32, 44-45 (1996).
  14. A. M. Clarke, P. M. Anandarajah, L. P. Barry, "Generation of widely tunable picosecond pulses with large SMSR by externally injecting a gain switched dual laser source," IEEE Photon. Technol. Lett. 16, 2344-2346 (2004).
  15. J. M. Dudley, L. P. Barry, J. D. Harvey, M. D. Thomson, B. C. Thomsen, P. G. Bollond, R. Leonhardt, "Complete characterization of ultrashort pulse sources at 1550 nm," IEEE J. Quantum Electron. 35, 441-450 (1999).
  16. K. A. Ahmed, H. F. Liu, N. Onodera, P. Lee, R. S. Tucker, Y. Ogawa, "Nearly transform limited pulse (3.6 ps) generation from gain-switched 1.55 $\mu \hbox{m}$ distributed feedback laser by using fibre compression technique," Electron. Lett. 29, 54-56 (1993).
  17. B. J. Eggleton, P. A. Krug, L. Poladian, K. A. Ahmed, H. F. Liu, "Experimental demonstration of compression of dispersed optical pulses by reflection from self-chirped optical fibre Bragg gratings," Opt. Lett. 19, 877-879 (1994).
  18. A. Clarke, P. M. Anandarajah, D. Reid, G. Edvell, L. P. Barry, J. D. Harvey, "Optimized pulse source for 40-Gb/s systems based on a gain switched-laser diode in conjunction with a nonlinearly chirped grating," IEEE Photon. Technol. Lett. 17, 196-198 (2005).
  19. M. C. Gross, M. Hanna, K. M. Patel, S. E. Ralph, "Reduction of power fluctuations in ultrafast optically time-division-multiplexed pulse trains by use of a nonlinear amplifying loop mirror," IEEE Photon. Technol. Lett. 14, 690-692 (2002).
  20. D. Mechin, E. Le Cren, D. A. Reid, D.-K. Lee, B. C. Thomsen, J. D. Harvey, "Picosecond and nanosecond sources generation of a 2.5 ps pedestal-free optical pulse using a 10 GHz gain-switched laser and a compressing nonlinear amplifying loop mirror," Proc. Conf. Laser Electro Opt. (2006) pp. 105-106.
  21. P. Gunning, J. K. Lucek, D. G. Moodie, K. Smith, R. P. Davey, S. V. Chernikov, M. J. Guy, J. R. Taylor, A. S. Siddiqui, "Gain-switched DFB laser diode pulse source using continuous wave light injection for Jitter suppression and an electroabsorption modulator for pedestal suppression," Electron. Lett. 32, 1010-1011 (1996).
  22. K. Iwatsuki, K. Suzuki, S. Nishi, "Generation of transform limited gain-switched DFB-LD pulses $<$ 6 ps with linear fibre compression and spectral window," Electron. Lett. 27, 1981-1982 (1991).
  23. Z. Hu, M. Davanco, D. J. Blumenthal, "Extinction ratio improvement by strong external light injection and SPM in an SOA for OTDM pulse source using a DBR laser diode," IEEE Photon. Technol. Lett. 15, 1419-1421 (2003).
  24. P. M. Anandarajah, C. Guignard, A. Clarke, D. Reid, M. Rensing, L. P. Barry, G. Edvell, J. D. Harvey, "Optimised pulse source employing an externally injected gain-switched laser diode in conjunction with a non-linearly chirped grating," IEEE J. Sel. Topics Quantum Electron. 12, 255-264 (2006).
  25. V. Mikhailov, P. Bayvel, I. Lealman, R. Wyatt, "Fibre grating laser-based RZ pulse source for 40 Gb/s OTDM transmission systems," Electron. Lett. 37, 909-910 (2001).
  26. J. M. Dudley, F. Gutty, S. Pitois, G. Millot, "Complete characterization of terahertz pulse trains generated from nonlinear process in optical fibers," IEEE J. Quantum Electron. 37, 587-594 (2001).
  27. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
  28. A. Rosenthal, M. Horowitz, "Inverse scattering algorithm for reconstructing strongly reflecting fiber Bragg gratings ," IEEE J. Quantum Electron. 39, 1018-1026 (2003).
  29. J. Skaar, O. H. Waagaard, "Design and characterization of finite-length fiber gratings," IEEE J. Quantum Electron. 39, 1238-1245 (2003).
  30. R. Feced, M. N. Zervas, M. A. Muriel, "An efficient inverse scattering algorithm for the design of non-uniform fibre Bragg gratings ," IEEE J. Quantum Electron. 35, 1105-1115 (1999).
  31. U. Troppenz, J. Kreissl, W. Rehbein, C. Bornholdt, T. Gaerner, M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, "40 Gb/s directly modulated InGaAsP passive feedback DFB laser," Proc. Eur. Conf. Opt. Commun. (2006) pp. 61-62.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited