OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 25, Iss. 6 — Jun. 1, 2007
  • pp: 1613–1620

Multilayered Waveguides for Increasing the Gain Bandwidth of Integrated Amplifiers

Athanasios Laliotis and Eric M. Yeatman

Journal of Lightwave Technology, Vol. 25, Issue 6, pp. 1613-1620 (2007)


View Full Text Article

Acrobat PDF (365 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

In this paper, we propose and demonstrate the use of multilayered (laminated) waveguides for increasing the available gain spectrum of sol–gel amplifiers. Experimental investigations of the effects of phosphorus codoping on the amplifier spectral characteristics and fluorescence decay are also presented. We demonstrate that the shape of the erbium emission cross section, for aluminophosphosilicate amplifiers, has a minor dependence on the amount of phosphorus doping and that spectral benefits are only achieved for aluminosilicate amplifiers, albeit with low levels of erbium inversion. Laminated amplifiers, consisting of alternating layers of two compositions, are shown to display novel spectral characteristics that cannot be obtained by the use of single composition cores. Internal gain, which is demonstrated for this device, also suggests that erbium inversion can be maintained at relatively high levels. Experimental results are supported by numerical analysis, and a 20-nm bandwidth increase is observed for laminated amplifiers, with gain levels up to 1.4 dB/cm indicated, when processing conditions are optimized.

© 2007 IEEE

Citation
Athanasios Laliotis and Eric M. Yeatman, "Multilayered Waveguides for Increasing the Gain Bandwidth of Integrated Amplifiers," J. Lightwave Technol. 25, 1613-1620 (2007)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-25-6-1613


Sort:  Year  |  Journal  |  Reset

References

  1. D. Barbier, P. Bruno, C. Cassagnettes, M. Trouillon, R. L. Hyde, A. Kevorkian, J. M. P. Deleveauxl, "Net gain of 27 dB with 8.6-cm-long Er/Yb doped glass planar amplifier," OFC Tech. Dig. (1998) pp. 45-48.
  2. P. Camy, J. E. Román, F. W. Willems, M. Hempstead, J. S. Wilkinson, J. C. van der Plaats, A. M. J. Koonen, A. Béguin, C. Prel, C. Lerminiaux, "Ion-exchanged planar lossless splitter at 1.5 μm," Electron. Lett. 32, 321-323 (1996).
  3. J. Hübner, S. Guldberg-Kjaer, M. Dyngaard, Y. Shen, C. L. Thomsen, S. Balslev, C. Jensen, D. Zauner, T. Feuchter, "Planar Er and Yb doped amplifiers and lasers," Appl. Phys. B, Photophys. Laser Chem. 73, 435-438 (2001).
  4. F. D. Patel, S. DiCarolis, P. Lum, S. Venkatesh, J. N. Miller, "A compact high performance optical waveguide amplifier," IEEE Photon. Technol. Lett. 16, 2607-2609 (2004).
  5. Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, A. Polman, "Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm," Appl. Phys. Lett. 71, 2922-2924 (1997).
  6. E. Desurvire, Erbium Doped Fiber Amplifiers: Principles and Applications (Wiley-Interscience, 1994).
  7. H. Ono, M. Yamada, Y. Ohishi, "Gain-flattened Er-doped fiber amplifier for WDM signal in the 1.57–1.6 μm wavelength region," IEEE Photon. Technol. Lett. 9, 596-598 (1997).
  8. M. Yamada, "Gain-flattened tellurite-based EDFA with flat amplification bandwidth of 76 nm," IEEE Photon. Technol. Lett. 10, 1244-1246 (1998).
  9. Y. Ohishi, "Gain characteristics of tellurite-based erbium doped fiber amplifiers for 1.5 μm broadband amplification," Opt. Lett. 23, 274-276 (1998).
  10. S. K. Liaw, "Dynamic power-equalised EDFA module based on strain tuneable Bragg gratings," IEEE Photon. Technol. Lett. 11, 797-799 (1999).
  11. L. R. Chen, "Transmission edge filters for power equalisation of EDFA's," IEEE Photon. Technol. Lett. 12, 822-824 (2000).
  12. W. J. Miniscalco, "Erbium-doped glasses for fiber amplifiers at 1500 nm," J. Lightw. Technol. 9, 234-250 (1991).
  13. K. Arai, H. Namikawa, K. Kumata, T. Honda, "Aluminium or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass," J. Appl. Phys. 59, 3430-3436 (1986).
  14. K. Hattori, T. Kitakawa, M. Oguma, H. Okazaki, Y. Ohmori, "Optical amplification in Er+3 doped P2O 5-SiO2 planar waveguides," J. Appl. Phys. 80, 5301-5308 (1996).
  15. W. Huang, R. R. A. Syms, E. M. Yeatman, M. M. Ahmad, T. V. Clap, S. M. Ojha, "Fiber–device–fiber gain from a sol–gel erbium-doped waveguide amplifier ," IEEE Photon. Technol. Lett. 14, 959-961 (2002).
  16. E. M. Yeatman, M. M. Ahmad, O. McCarthy, A. Vannucci, P. Gastaldo, D. Barbier, D. Mongardien, C. Moronvalle, "Optical gain in Er-doped SiO2 - TiO2 waveguides fabricated by the sol–gel technique," Opt. Commun. 164, 19-25 (1999).
  17. W. Huang, R. R. A. Syms, "Sol–gel silica on silicon buried channel EDWA's," J. Lightw. Technol. 21, 1339-1349 (2003).
  18. K. Solehmainen, M. Kapulainen, P. Heimala, K. Polamo, "Erbium doped waveguides fabricated with atomic layer deposition method," IEEE Photon. Technol. Lett. 16, 194-196 (2004).
  19. A. Laliotis, E. M. Yeatman, M. M. Ahmad, W. Huang, "Molecular homogeneity in erbium-doped sol–gel waveguide amplifiers," IEEE J. Quantum Electron. 40, 805-814 (2004).
  20. M. W. Sckerl, S. Guldberg-Kjaer, M. Rysholt Poulsen, P. Shi, J. Chevallier, "Precipitate coarsening and self organization in erbium-doped silica," Phys. Rev. B, Condens. Matter 59, 13 494-13 497 (1999).
  21. R. R. A. Syms, A. S. Holmes, W. Huang, V. M. Schneider, M. Green, "Development of the SC-RTA process for fabrication of sol–gel based silica-on-silicon integrated optic components," J. Sol-Gel Sci. Technol. 13, 509-516 (1998).
  22. R. R. Thomson, H. T. Bookey, H. Ur-Rehman, S. Liu, N. Suyal, A. K. Kar, "Optically active erbium-doped waveguides fabricated using a single sol–gel deposition technique," J. Lightw. Technol. 23, 4249-4256 (2005).
  23. E. M. Yeatman, M. M. Ahmad, O. McCarthy, "Sol–gel fabrication of rare-earth photonic components," J. Sol-Gel Sci. Technol. 19, 231-236 (2000).
  24. R. R. A. Syms, W. Huang, V. M. Schneider, "Optimisation of borophosphosilicate glass compositions for silica-on-silicon integrated optical circuits fabricated by the sol–gel process," Electron. Lett. 32, 1233-1234 (1996).
  25. M. Born, E. Wolf, Principles of Optics (Cambridge Univ. Press, 1997).
  26. M. A. Fardad, E. M. Yeatman, E. J. C. Dawnay, M. Green, F. Horowitz, "Effects of H2O on structure of acid catalysed SIO2 sol–gel films," J. Non-Cryst. Solids 183, 260-267 (1995).
  27. A. Laliotis, E. M. Yeatman, "Consolidation and homogeneity of erbium doped waveguide amplifiers," Conf. Lasers and Electro-Optics/Int. Council Quantum Electronics PhAST San FranciscoCA (2004) Paper CTuS2.
  28. J. Laegsgaard, "Dissolution of rare-earth clusters in SIO2 by Al codoping: A microscopic model," Phys. Rev. B, Condens. Matter 65, 174114-1-174114-10 (2002).
  29. J. Philipsen, P. Gastaldo, C. Cassagnettes, D. Barbier, A. Kevorkian, A. Yeniay, "Self-referenced Q-switched pump-probe transmission experiment for the determination of the degree of clustering in Er-doped planar waveguides," Proc. Opt. Amplifiers and Their Appl., OSA Trends Opt. Photon. (1999) pp. 80-83.
  30. G. Nykolak, P. C. Becker, J. Shmulovitch, Y. H. Wong, D. J. DiGiovanni, A. J. Bruce, "Concentration dependant 4I13/2 lifetimes in Er-doped fibers and Er-doped planar waveguides," IEEE Photon. Technol. Lett. 5, 1014-1016 (1993).
  31. W. Huang, R. R. A. Syms, "Analysis of folded erbium-doped planar waveguide amplifiers by the method of lines," J. Lightw. Technol. 17, 2658-2664 (1999).
  32. A. Laliotis, E. M. Yeatman, S. J. Al-Bader, "Modelling signal and ASE evolution in erbium doped amplifiers by the method of lines ," J. Lightw. Technol. 24, 1589-1600 (2006).
  33. F. Di Pasquale, C. W. Pitt, "Improved gain performance characteristics in high concentration Er/Yb codoped glass waveguide amplifiers," IEEE J. Quantum Electron. 30, 2127-2131 (1994).
  34. F. Di Pasquale, M. Federighi, "Modelling of uniform and pair induced upconversion mechanisms in high concentration erbium doped silica waveguides," J. Lightw. Technol. 13, 1858-1864 (1995).
  35. O. Lumholt, T. Rasmussen, A. Bjarklev, "Modelling of extremely high concentration erbium-doped silica waveguides," Electron. Lett. 29, 495-496 (1993).
  36. C. Strohhofer, A. Polman, "Relationship between concentration in Er3+ - Yb3+ doped waveguide amplifiers," J. Appl. Phys. 90, 4314-4320 (2001).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited