OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 25, Iss. 7 — Jul. 1, 2007
  • pp: 1742–1753

Fundamental Limits of Electronic Signal Processing in Direct-Detection Optical Communications

Michele Franceschini, Giorgio Bongiorni, Gianluigi Ferrari, Riccardo Raheli, Fausto Meli, and Andrea Castoldi

Journal of Lightwave Technology, Vol. 25, Issue 7, pp. 1742-1753 (2007)


View Full Text Article

Acrobat PDF (431 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Electronic signal processing is becoming very attractive to overcome various impairments that affect optical communications, and electronic dispersion compensation (EDC) represents a typical application in the currently designed systems. However, the inherent limits in performance achievable by electronically processing the signal at the output of a nonlinear photodetector have not received the attention they deserve. In this paper, we investigate the information-theoretic limits of electronic signal processing in transmission systems employing direct photodetection and two possible modulation formats: 1) on–off keying (OOK) with nonreturn-to-zero pulses; and 2) optical duobinary modulation (ODBM). The analysis is based on the computation of the information rate, i.e., the maximum achievable data transfer rate, and accounts for the modulation format as well as relevant parameters of the transmission scheme. In particular, we investigate the impact of sampling rate, uncompensated chromatic dispersion (CD), and quantization resolution of the electrical signal at the output of a direct photodetector. For OOK systems, the obtained results show that the optical signal-to-noise ratio penalty entailed by EDC can be limited to about 2 dB at most values of CD of interest in current applications. Moreover, ODBM systems at high values of CD can almost perform as OOK systems at zero CD. For all the considered modulation formats, the obtained results show that the received electrical signal can be sampled at a rate of two samples per bit interval and quantized with a precision of 3 bits per sample to practically achieve the ultimate performance limits.

© 2007 IEEE

Citation
Michele Franceschini, Giorgio Bongiorni, Gianluigi Ferrari, Riccardo Raheli, Fausto Meli, and Andrea Castoldi, "Fundamental Limits of Electronic Signal Processing in Direct-Detection Optical Communications," J. Lightwave Technol. 25, 1742-1753 (2007)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-25-7-1742

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited