OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 25, Iss. 7 — Jul. 1, 2007
  • pp: 1754–1760

Pattern Dependence of Data Distortion in Slow-Light Elements

Lin Zhang, Ting Luo, Changyuan Yu, Wen Zhang, and Alan E. Willner

Journal of Lightwave Technology, Vol. 25, Issue 7, pp. 1754-1760 (2007)

View Full Text Article

Acrobat PDF (265 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Slow light has been proposed as a potential solution to all-optically tunable delay line. However, a slow-light element may degrade data quality in an optical communication system while decreasing group velocity of optical pulses. In this paper, pattern dependence of signal distortion is identified as a main reason for data degradation, which is caused by narrow-band amplitude and phase responses of the slow-light elements. We define figure of merit involving pulse delay and data degradation to optimize slow-light devices. It is shown that the pattern dependence can be reduced by detuning slow-light devices away from the signal carrier frequency, which allows using narrow-band slow-light techniques to increase normalized delay up to 0.8, with Q improvement of 2 dB.

© 2007 IEEE

Lin Zhang, Ting Luo, Changyuan Yu, Wen Zhang, and Alan E. Willner, "Pattern Dependence of Data Distortion in Slow-Light Elements," J. Lightwave Technol. 25, 1754-1760 (2007)

Sort:  Year  |  Journal  |  Reset


  1. L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi, "Light speed reduction to 17 meters per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
  2. R. W. Boyd, D. J. Gauther, Progress in Optics (Elsevier, 2002) pp. 497-530.
  3. R. W. Boyd, D. J. Gauthier, A. L. Gaeta, "Applications of slow light in telecommunications," Opt. Photon. News 17, 19-23 (2006).
  4. S. A. Hamilton, B. S. Robinson, T. E. Murphy, S. J. Savage, E. P. Ippen, "100 Gb/s optical time-division multiplexed networks," J. Lightw. Technol. 20, 2086-2100 (2002).
  5. M. Soljacic, S. Johnson, S. Fan, M. Ibanescu, E. Ippen, J. D. Joannopoulos, "Photonic-crystal slow-light enhancement of nonlinear phase sensitivity," J. Opt. Soc. Amer. B, Opt. Phys. 19, 2052-2059 (2002).
  6. W. Zhong, R. S. Tucker, "Wavelength routing-based photonic packet buffers and their applications in photonic packet switching systems," J. Lightw. Technol. 16, 1737-1745 (1998).
  7. C. Liu, Z. Dutton, C. Behroozi, L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses ," Nature 409, 490-493 (2001).
  8. C. J. Chang-Hasnain, P. C. Ku, J. Kim, S. L. Chuang, "Variable optical buffer using slow light in semiconductor nanostructures," Proc. IEEE 91, 1884-1897 (2003).
  9. M. S. Bigelow, N. N. Lepeshkin, R. W. Boyd, "Observation of ultraslow light propagation in a ruby crystal at room temperature," Phys. Rev. Lett. 90, 113 903 (2003).
  10. C. J. Chang-Hasnain, S. L. Chuang, "Slow and fast light in semiconductor quantum-well and quantum-dot devices," J. Lightw. Technol. 24, 4642-4654 (2006).
  11. H.-Y. Tseng, J. Huang, A. Adibi, "Expansion of the relative time delay by switching between slow and fast light using coherent population oscillation with semiconductors," Appl. Phys. B, Photophys. Laser Chem. B85, 493-501 (2006).
  12. K. Y. Song, M. G. Herráez, L. Thévenaz, "Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering," Opt. Exp. 13, 82-88 (2005).
  13. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153 902-153 905 (2005).
  14. A. Zadok, A. Eyal, M. Tur, "Extended delay of broadband signals in stimulated Brillouin scattering slow light using synthesized pump chirp," Opt. Exp. 14, 8498-8505 (2006).
  15. V. P. Kalosha, L. Chen, X. Bao, "Slow and fast light via SBS in optical fibers for short pulses and broadband pump," Opt. Exp. 14, 12 693-12 703 (2006).
  16. Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, A. E. Willner, "12-GHz-bandwidth SBS slow light in optical fibers," J. Lightw. Technol. 25, 201-206 (2007).
  17. K. Lee, N. M. Lawandy, "Optically induced pulse delay in a solid-state Raman amplifier," Appl. Phys. Lett. 78, 703-705 (2001).
  18. J. E. Sharping, Y. Okawachi, A. L. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Exp. 13, 6092-6098 (2005).
  19. Y. Okawachi, M. Foster, J. Sharping, A. Gaeta, Q. Xu, M. Lipson, "All-optical slow-light on a photonic chip," Opt. Exp. 14, 2317-2322 (2006).
  20. D. Dahan, G. Eisenstein, "Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: A route to all optical buffering," Opt. Exp. 13, 6234-6249 (2005).
  21. E. Shumakher, A. Willinger, R. Blit, D. Dahan, G. Eisenstein, "Large tunable delay with low distortion of 10 Gb/s data in a slow light system based on narrow band fiber parametric amplification," Opt. Exp. 14, 8540-8545 (2006).
  22. L. Yi, W. Hu, Y. Su, M. Gao, L. Leng, "Design and system demonstration of a tunable slow-light delay line based on fiber parametric process," IEEE Photon. Technol. Lett. 18, 2575-2577 (2006).
  23. A. Melloni, F. Morichetti, M. Martinelli, "Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures ," Opt. Quantum Electron. 35, 365-379 (2003).
  24. M. F. Yanik, S. Fan, "Stopping light all optically," Phys. Rev. Lett. 92, 083 901-1-083 901-4 (2004).
  25. J. K. S. Poon, J. Scheuer, Y. Xu, A. Yariv, "Designing coupled-resonator optical waveguide delay lines," J. Opt. Soc. Amer. B, Opt. Phys. 21, 1665-1673 (2004).
  26. S. Dubovitsky, W. H. Steier, "Relationship between the slowing and loss in optical delay lines," IEEE J. Quantum Electron. 42, 372-377 (2006).
  27. Z. Wang, S. Fan, "Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines," Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 68, 066 616-1-066 616-4 (2003).
  28. E. Podivilov, B. Sturman, A. Shumelyuk, S. Odoulov, "Light pulse slowing down up to 0.025 cm/s by photorefractive two-wave coupling," Phys. Rev. Lett. 91, 083 902-1-083 902-4 (2003).
  29. X. Zhao, P. Palinginis, B. Pesala, C. J. Chang-Hasnain, P. Hemmer, "Tunable ultraslow light in vertical-cavity surface-emitting laser amplifier," Opt. Exp. 13, 7899-7904 (2005).
  30. Z. S. Yang, N. H. Kwong, R. Binder, A. L. Smirl, "Distortionless light pulse delay in quantum-well Bragg structures," Opt. Lett. 30, 2790-2792 (2005).
  31. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, M. Lipson, "Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency," Phys. Rev. Lett. 96, 123 901.1-123 901.4 (2006).
  32. J. T. Mok, C. M. de Sterke, I. C. M. Littler, B. J. Eggleton, "Dispersionless slow light using gap solitons," Nature Phys. 2, 775-780 (2006).
  33. T. Kunihiro, A. Maeda, S. Oda, A. Maruta, "Experimental demonstration of all-optical tunable delay line based on distortion-less slow and fast light using soliton collision in optical fiber," Opt. Exp. 14, 11736-11747 (2006).
  34. R. W. Boyd, D. J. Gauthier, A. L. Gaeta, A. E. Willner, "Maximum time delay achievable on propagation through a slow-light medium," Phys. Rev. A, Gen. Phys. 71, 023 801-1-023 801-4 (2005).
  35. A. B. Matsko, D. V. Strekalov, L. Maleki, "On the dynamic range of optical delay lines based on coherent atomic media," Opt. Exp. 13, 2210-2223 (2005).
  36. J. B. Khurgin, "Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: Comparative analysis," J. Opt. Soc. Amer. B, Opt. Phys. 22, 1062-1074 (2005).
  37. R. S. Tucker, P. C. Ku, C. J. Chang-Hasnain, "Slow-light optical buffers: Capabilities and fundamental limitations," J. Lightw. Technol. 23, 4046-4066 (2005).
  38. J. B. Khurgin, "Power dissipation in slow light devices: A comparative analysis," Opt. Lett. 32, 163-165 (2007).
  39. P. C. Ku, C. J. Chang-Hasnain, R. S. Tucker, "Link performance of all-optical buffers using slow light," Proc. Opt. Fiber Commun. Conf., Tech. Dig. (2005) pp. 453-455.
  40. M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. C. Dawes, D. J. Gauthier, "Distortion management in slow-light pulse delay," Opt. Exp. 13, 9995-10 002 (2005).
  41. L. Zhang, T. Luo, W. Zhang, C. Yu, Y. Wang, A. E. Willner, "Optimizing operating conditions to reduce data pattern dependence induced by slow light elements ," Optical Fiber Commun. Conf. AnaheimCA (2006) Paper OFP7.
  42. E. Shumakher, N. Orbach, A. Nevet, D. Dahan, G. Eisenstein, "On the balance between delay, bandwidth and signal distortion in slow light systems based on stimulated Brillouin scattering in optical fibers," Opt. Exp. 14, 5877-5884 (2006).
  43. C. Yu, T. Luo, L. Zhang, A. E. Willner, "Data pulse distortion induced by a slow-light tunable delay line in optical fiber," Opt. Lett. 32, 20-22 (2007).
  44. B. Zhang, Y.-S. Yan, I. Fazal, L. Zhang, A. E. Willner, Z. Zhu, D. J. Gauthier, "Slow light on Gb/s differential-phase-shift-keying signals," Opt. Exp. 15, 1878-1883 (2007).
  45. R. M. Camacho, M. V. Pack, J. C. Howell, "Slow light with large fractional delays by spectral hole-burning in rubidium vapor," Phys. Rev. A, Gen. Phys. 74, 033 801-1-033 801-4 (2006).
  46. Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, A. E. Willner, "Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber," J. Opt. Soc. Amer. B, Opt. Phys. 22, 2378-2384 (2005).
  47. J. D. Downie, "Relationship of Q penalty to eye-closure penalty for NRZ and RZ signals with signal-dependent noise," J. Lightw. Technol. 23, 2031-2038 (2005).
  48. M. G. Herráez, K. Y. Song, L. Thévenaz, "Arbitrary-bandwidth Brillouin slow light in optical fibers," Opt. Exp. 14, 1395-1400 (2006).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited