OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 25, Iss. 7 — Jul. 1, 2007
  • pp: 1797–1804

Microgap Multicavity Fabry–Pérot Biosensor

Yan Zhang, Xiaopei Chen, Yongxin Wang, Kristie L. Cooper, and Anbo Wang

Journal of Lightwave Technology, Vol. 25, Issue 7, pp. 1797-1804 (2007)


View Full Text Article

Acrobat PDF (326 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

This paper presents a microgap multicavity Fabry–Pérot interferometric sensor fabricated by wet etching and fusion splicing of single-mode optical fibers. The temperature dependence of the optical thickness measurement of self-assembled thin films can be compensated by extracting the temperature information from the multiplexed temperature sensor. Experimental results demonstrate that thin-film characteristics under temperature variations can be examined accurately. The high-temperature sensitivity of the temperature sensor also enables biosensing under temperature variations. This greatly improves the flexibility in sample handling and provides the opportunity to investigate temperature effects in biological applications.

© 2007 IEEE

Citation
Yan Zhang, Xiaopei Chen, Yongxin Wang, Kristie L. Cooper, and Anbo Wang, "Microgap Multicavity Fabry–Pérot Biosensor," J. Lightwave Technol. 25, 1797-1804 (2007)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-25-7-1797


Sort:  Year  |  Journal  |  Reset

References

  1. B. Qi, G. Pickrell, P. Zhang, Y. Duan, W. Peng, J. Xu, Z. Huang, J. Deng, H. Xiao, Z. Wang, W. Huo, R. G. May, A. Wang, "Fiber optic pressure and temperature sensors for oil down hole application," Fiber Optic Sensor Technol. Applications Conf. NewtonMA (2001).
  2. V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, J. A. Greene, "Multiple strain state measurements using conventional and absolute optical fiber-based extrinsic Fabry–Pérot interferometric strain sensors," Smart Mater. Struct. 4, 240-245 (1995).
  3. B. Yu, D. W. Kim, J. D. Deng, H. Xiao, A. Wang, "Fiber Fabry–Pérot sensors for detection of partial discharges in power transformers ," Appl. Opt. 42, 3241-3250 (2003).
  4. Y. Zhang, H. Shibru, K. L. Cooper, A. Wang, "Miniature fiber-optic multicavity Fabry–Pérot interferometric biosensor ," Opt. Lett. 30, 1021-1023 (2005).
  5. T. Bae, R. A. Atkins, H. F. Taylor, W. N. Gibler, "Interferometric fiber-optic sensor embedded in a spark plug for in-cylinder pressure measurement in engines," Appl. Opt. 42, 1003-1007 (2003).
  6. C. E. Lee, W. N. Gibler, R. A. Atkins, H. F. Taylor, "In-line fiber Fabry–Pérot-interferometer with high-reflectance internal mirrors ," J. Lightw. Technol. 10, 1376-1379 (1992).
  7. P. Betts, J. A. Davis, "Bragg grating Fabry–Pérot interferometer with variable finesse," Opt. Eng. 43, 1258-1259 (2004).
  8. F. Shen, W. Peng, K. Cooper, G. Pickrell, A. Wang, "UV-induced intrinsic Fabry–Pérot interferometric fiber sensors," Proc. Sens. Harsh Environ. (2004) pp. 47-56.
  9. M. Gupta, H. Jiao, A. O'Keefe, "Cavity-enhanced spectroscopy in optical fibers," Opt. Lett. 27, 1878-1880 (2002).
  10. R. Slavik, S. Doucet, S. LaRochelle, "High-performance all-fiber Fabry–Pérot filters with superimposed chirped Bragg gratings," J. Lightw. Technol. 21, 1059-1065 (2003).
  11. X. D. Peng, C. Roychoudhuri, "Design of high finesse, wideband Fabry–Pérot filter based on chirped fiber Bragg grating by numerical method," Opt. Eng. 39, 1858-1862 (2000).
  12. X. Chen, F. Shen, A. Wang, Z. Wang, Y. Zhang, "Novel Fabry–Pérot fiber optic sensor with multiple applications," Proc. Sens. Harsh Environ. (2004) pp. 111-121.
  13. Y. Zhang, K. L. Cooper, A. Wang, "Multicavity Fabry–Pérot interferometric thin-film sensor with built-in temperature compensation," IEEE Photon. Technol. Lett. 17, 2712-2714 (2005).
  14. K. Kurihara, H. Ohkawa, Y. Iwasaki, O. Niwa, T. Tobita, K. Suzuki, "Fiber-optic conical microsensors for surface plasmon resonance using chemically etched single-mode fiber," Anal. Chim. Acta 523, 165-170 (2004).
  15. J. R. Epstein, M. Lee, D. R. Walt, "High-density fiber-optic genosensor microsphere array capable of zeptomole detection limits ," Anal. Chem. 74, 1836-1840 (2002).
  16. R. Stockle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, U. P. Wild, "High-quality near-field optical probes by tube etching," Appl. Phys. Lett. 75, 160-162 (1999).
  17. T. Pangaribuan, K. Yamada, S. D. Jiang, H. Ohsawa, M. Ohtsu, "Reproducible fabrication technique of nanometric tip diameter fiber probe for photon scanning tunneling microscope," Jpn. J. Appl. Phys. 2, Lett. 31, L1302-L1304 (1992).
  18. A. Klini, T. David, E. Bourillot, S. Emonin, P. Papadopoulos, J. P. Goudonnet, G. Kotrotsios, "Reproducible optical fiber tips for photon scanning tunneling microscopy with very small ( $<$ 5$^{\circ}$) cone angle ," J. Lightw. Technol. 16, 1220-1227 (1998).
  19. F. B. Shen, A. B. Wang, "Frequency-estimation-based signal-processing algorithm for white-light optical fiber Fabry–Pérot interferometers," Appl. Opt. 44, 5206-5214 (2005).
  20. T. J. Cavicchi, Digital Signal Processing (Wiley, 2000) pp. 630-631.
  21. B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, "Novel data processing techniques for dispersive white light interferometer," Opt. Eng. 42, 3165-3171 (2003).
  22. S. Nemoto, T. Makimoto, "Analysis of splice loss in single-mode fibers using a Gaussian field approximation," Opt. Quantum Electron. 11, 447-457 (1979).
  23. D. Marcuse, "Loss analysis of single-mode fiber splices," Bell Syst. Tech. J. 56, 703-718 (1977).
  24. Y. S. Touloukian, Thermal Expansion-Nonmetallic Solids (Plenum, 1977) pp. 358.
  25. M. J. Weber, Handbook of Optical Materials (CRC, 2003) pp. 239.
  26. Y. Lvov, G. Decher, H. Mohwald, "Assembly, structural characterization, and thermal-behavior of layer-by-layer deposited ultrathin films of Poly(Vinyl Sulfate) and Poly(Allylamine)," Langmuir 9, 481-486 (1993).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited