OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 25, Iss. 7 — Jul. 1, 2007
  • pp: 1832–1840

Fully Adiabatic Design of Waveguide Branches

Hiroshi Ishikawa

Journal of Lightwave Technology, Vol. 25, Issue 7, pp. 1832-1840 (2007)

View Full Text Article

Acrobat PDF (606 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


A design method for fully adiabatic waveguide branches is developed for the first time. Mode conversion between local normal modes is entirely suppressed through the explicit decoupling of the modes, where novel parametric and graphical representations of the self-consistent orthogonal coupled-mode theory are utilized to describe the strongly coupled part of the waveguide branches. A closed-form expression for an adiabatic condition is derived, and the significance of degenerated waveguide patterns with nonuniform waveguide widths is clarified. Validity of the method is tested by numerical simulations, and L-2 dependence of the converted power to a circuit length is found. These results raise a fundamental question about the meaning of the adiabaticity in the waveguide branches.

© 2007 IEEE

Hiroshi Ishikawa, "Fully Adiabatic Design of Waveguide Branches," J. Lightwave Technol. 25, 1832-1840 (2007)

Sort:  Year  |  Journal  |  Reset


  1. H. Yajima, "Dielectric thin film optical branching waveguide," Appl. Phys. Lett. 22, 647-649 (1973).
  2. W. Burns, A. F. Milton, "Mode conversion in planar-dielectric separating waveguides," IEEE J. Quantum Electron. QE-11, 32-39 (1975).
  3. H. Yajima, "Coupled mode analysis of dielectric planar branching waveguides," IEEE J. Quantum Electron. QE-14, 749-755 (1978).
  4. W. Burns, A. F. Milton, "An analytic solution for mode coupling in optical waveguide branches," IEEE J. Quantum Electron. QE-16, 446-454 (1980).
  5. M. Izutsu, A. Enokihara, T. Sueta, "Optical-waveguide hybrid coupler," Opt. Lett. 7, 549-551 (1982).
  6. Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, K. J. Orlowsky, "Integrated optic adiabatic devices on silicon," IEEE J. Quantum Electron. 27, 556-566 (1991).
  7. R. Adar, C. H. Henry, R. F. Kazarinov, R. C. Kistler, G. R. Weber, "Adiabatic 3 dB couplers, filters, and multiplexers made with silica waveguides on silicon ," J. Lightw. Technol. 10, 46-50 (1992).
  8. N. J. P. Frenette, J. C. Cartledge, "Towards the optimization of dielectric waveguide: The effect of longitudinal variations in the branching angle," IEEE J. Quantum Electron. 24, 2491-2499 (1988).
  9. N. J. P. Frenette, J. C. Cartledge, "The effect of wavefront tilt on mode conversion in asymmetric Y-branch waveguides," IEEE J. Quantum Electron. 25, 742-748 (1989).
  10. J. D. Love, R. W. C. Vance, A. Joblin, "Asymmetric, adiabatic multipronged planar splitters," Opt. Quantum Electron. 28, 353-369 (1996).
  11. T. A. Ramadan, R. Scarmozzino, R. M. Osgood, Jr."Adiabatic couplers: Design rules and optimization," J. Lightw. Technol. 16, 277-283 (1998).
  12. K. Jinguji, N. Takato, A. Sugita, M. Kawachi, "Mach–Zehnder interferometer type optical waveguide coupler with wavelength-flattened coupling ratio," Electron. Lett. 26, 1326-1327 (1990).
  13. A. Messiah, Quantum Mechanics (Dover, 2000).
  14. A. W. Schnyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).
  15. W. H. Louisell, "Analysis of the single tapered mode coupler," Bell Syst. Tech. J. 34, 853-870 (1955).
  16. R. R. A. Syms, "The digital directional coupler: Improved design," IEEE Photon. Technol. Lett. 4, 1135-1138 (1992).
  17. A. Syahriah, V. M. Schneider, S. Al-Bader, "The design of mode evolution couplers," J. Lightw. Technol. 16, 1907-1914 (1998).
  18. G. T. Paloczi, A. Eyal, A. Yariv, "Wavelength-insensitive nonadiabatic mode evolution couplers," IEEE Photon. Technol. Lett. 16, 515-517 (2004).
  19. H. A. Haus, W. P. Huang, S. Kawakami, N. A. Whitaker, "Coupled-mode theory of optical waveguides," J. Lightw. Technol. LT-5, 16-23 (1987).
  20. W. P. Huang, H. A. Haus, "Self-consistent vector coupled-mode theory for tapered optical waveguides," J. Lightw. Technol. 8, 922-926 (1990).
  21. R. G. Peall, R. R. A. Syms, "Scalar strong coupled mode theory for slowly varying waveguide arrays," Opt. Commun. 67, 421-424 (1988).
  22. W. P. Huang, S. Lessard, "Wavefront-tilt effect in nonparallel optical waveguides," J. Lightw. Technol. 10, 316-322 (1992).
  23. J. P. Davis, P. Pechukas, "Nonadiabatic transitions induced by a time-dependent Hamiltonian in the semiclassical/adiabatic limit: The two-state case," J. Chem. Phys. 64, 3129-3137 (1976).
  24. M. Berry, "Histories of adiabatic quantum transitions," Proc. R. Soc. Lond. A, Math. Phys. Sci. 429, 61-72 (1990).
  25. H. Nakamura, Nonadiabatic Transition: Concepts, Basic Theories and Applications (World Scientific, 2002).
  26. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2005).
  27. D. B. Mortimore, "Wavelength-flattened fused couplers," Electron. Lett. 21, 742-743 (1990).
  28. M. Berry, "Quantal phase factor accompanying adiabatic changes," Proc. R. Soc. Lond. A, Math. Phys. Sci. 392, 45-57 (1984).
  29. A. Yariv, Optical Electronics in Modern Communications (Oxford Univ. Press, 1997).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited