OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 25, Iss. 9 — Sep. 1, 2007
  • pp: 2306–2314

A Finite-Difference Time-Domain Method for the Simulation of Gain Materials With Carrier Diffusion in Photonic Crystals

Wolfram H. P. Pernice, Frank P. Payne, and Dominic F. G. Gallagher

Journal of Lightwave Technology, Vol. 25, Issue 9, pp. 2306-2314 (2007)


View Full Text Article

Acrobat PDF (900 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

In this paper, we present a finite-difference time-domain formulation for active gain materials. Our scheme is based on a frequency-dependent conductivity. Experimental material gain is fitted with high accuracy to a multipole Lorentzian model using a semideterministic fitting algorithm. Because our model is an approximation to the full vectorial Maxwell's system of equations, we include carrier diffusion into the rate equations for a two-level system. The material gain is included into the standard set of Maxwell's equations by linking the frequency-dependent conductivity to the rate equations. Lasing is demonstrated for a vertical-cavity-surface-emitting-laser structure and photonic crystal lasers.

© 2007 IEEE

Citation
Wolfram H. P. Pernice, Frank P. Payne, and Dominic F. G. Gallagher, "A Finite-Difference Time-Domain Method for the Simulation of Gain Materials With Carrier Diffusion in Photonic Crystals," J. Lightwave Technol. 25, 2306-2314 (2007)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-25-9-2306

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited