Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 25,
  • Issue 9,
  • pp. 2612-2617
  • (2007)

Finite-Difference Time Domain Method for Nonorthogonal Unit-Cell Two-Dimensional Photonic Crystals

Not Accessible

Your library or personal account may give you access

Abstract

A finite-difference time-domain (FDTD) method based on a regular Cartesian Yee's lattice is developed for calculating the dispersion band diagram of a 2-D photonic crystal. Unlike methods that require auxiliary difference equations or nonorthogonal grid schemes, our method uses the standard central-difference equations and can be easily implemented in a parallel computing environment. The application of the periodic boundary condition on an angled boundary involves a split-field formulation of Maxwell's equations. We show that the method can be applied for photonic crystals of both orthogonal and nonorthogonal unit cells. Complete and accurate bandgap information is obtained by using this FDTD approach. Numerical results for 2-D TE/TM modes in triangular lattice photonic crystals are in excellent agreement with the results from 2-D plane wave expansion method. For a triangular lattice photonic crystal slab, the dispersion relation is calculated by a 3-D FDTD method similarly formulated. The result agrees well with the 3-D finite-element method solution. The calculations also show that the 2-D simulation using an effective index approximation can result in considerable error for higher bands.

© 2007 IEEE

PDF Article
More Like This
Compact finite-difference frequency-domain method for the analysis of two-dimensional photonic crystals

Chin-ping Yu and Hung-chun Chang
Opt. Express 12(7) 1397-1408 (2004)

Photonic band gap analysis using finite-difference frequency-domain method

Shangping Guo, Feng Wu, Sacharia Albin, and Robert S. Rogowski
Opt. Express 12(8) 1741-1746 (2004)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.