OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 25, Iss. 9 — Sep. 1, 2007
  • pp: 2700–2705

Highly Birefringent Elliptical-Hole Photonic Crystal Fibers With Double Defect

Daru Chen and Linfang Shen

Journal of Lightwave Technology, Vol. 25, Issue 9, pp. 2700-2705 (2007)

View Full Text Article

Acrobat PDF (526 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


A novel elliptical-hole photonic crystal fiber (PCF) with double defect is theoretically investigated, and its high birefringence [including both the phase-index birefringence (PIB) and the group-index birefringence (GIB)] is demonstrated, which can reach an order of 10-2. Such a PCF can especially have a very high PIB, with a negligible GIB in a small band of normalized frequencies. The PIB of this PCF is much higher than that of the circular-hole PCF with double defect, under comparable parameters. Compared with the elliptical-hole PCF with single defect, the present PCF possesses the advantages of both a higher PIB and a larger modal area for modest ellipticities; thus, it is more suitable in linear applications, as well as in fabrication. Moreover, a novel single-polarization single-mode (SPSM) PCF with a broad wavelength band is proposed and demonstrated. In addition, a new approach in designing broadband SPSM PCFs is suggested.

© 2007 IEEE

Daru Chen and Linfang Shen, "Highly Birefringent Elliptical-Hole Photonic Crystal Fibers With Double Defect," J. Lightwave Technol. 25, 2700-2705 (2007)

Sort:  Year  |  Journal  |  Reset


  1. X. Z. Sang, P. L. Chu, C. X. Yu, "Applications of nonlinear effects in highly nonlinear photonic crystal fiber to optical communications," Opt. Quantum Electron. 37, 965-994 (2005).
  2. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. Riishede, D. Noordegreaaf, K. Nielsen, A. Carlsen, A. Bjarklev, "Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions," Opt. Lett. 29, 1974-1976 (2004).
  3. S. O. Konorov, A. M. Zheltikov, M. Scalora, "Photonic-crystal fiber as a multifunctional optical sensor and sample collector," Opt. Express 13, 3454-3459 (2005).
  4. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, "White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber ," Opt. Lett. 26, 1356-1358 (2001).
  5. J. G. Rarity, J. D. Fulconis, W. J. Wadsworth, P. S. J. Russell, "Photonic crystal fiber source of correlated photon pairs," Opt. Express 13, 534-544 (2005).
  6. D. H. Kim, J. U. Kang, "Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity," Opt. Express 12, 4490-4495 (2004).
  7. P. R. Chaudhuri, V. Paulose, C. Zhao, C. Lu, "Near-elliptic core polarization-maintaining photonic crystal fiber: Modeling birefringence characteristics and realization," IEEE Photon. Technol. Lett. 16, 1301-1303 (2004).
  8. A. Ortigosa-Blance, A. Diez, M. Delgado-Pinar, J. L. Cruz, M. V. Andres, "Ultrahigh birefringent nonlinear microstructured fiber," IEEE Photon. Technol. Lett. 16, 1667-1669 (2004).
  9. W. Belardi, G. Bouwmans, L. Provino, M. Douay, "Form-induced birefringence in elliptical hollow photonics crystal fiber with large mode area ," IEEE J. Quantum Electron. 41, 1558-1564 (2005).
  10. Y. Yue, G. Kai, Z. Wang, Y. Lu, C. Zhang, T. Sun, Y. Li, L. Jin, J. Liu, Y. Liu, S. Yuan, X. Dong, "Highly birefringent elliptical-hole photonic crystal fiber with two big circular air holes adjacent to the core," IEEE Photon. Technol. Lett. 18, 2638-2640 (2006).
  11. D. Chen, L. Shen, "Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss," IEEE Photon. Technol. Lett. 19, 185-187 (2007).
  12. K. Saitoh, M. Koshiba, "Single-polarization single-mode photonic crystal fibers," IEEE Photon. Technol. Lett. 15, 1340-1384 (2003).
  13. H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, S. Yamaguchi, "Absolutely single polarization photonic crystal fiber," IEEE Photon. Technol. Lett. 16, 182-184 (2004).
  14. J. Ju, W. Jin, M. S. Demokan, "Design of single-polarization single mode photonics crystal fibers," J. Lightw. Technol. 24, 825-830 (2001).
  15. T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, H. Simonsen, "Highly birefringent index-guiding photonic crystal fibers," IEEE Photon. Technol. Lett. 13, 588-590 (2001).
  16. M. Sapulak, G. Statkiewicz, J. Olszewski, T. Martynkien, W. Urbanczyk, J. Wojcik, M. Makara, J. Klimek, T. Nasilowski, F. Berghmans, H. Thienpont, "Experimental and theoretical investigations of birefringent holey fibers with a triple defect ," Appl. Opt. 44, 2652-2658 (2005).
  17. M. Antkowiak, R. Kotynski, T. Nasilowski, P. Lesiak, J. Wojcik, W. Urbanczyk, F. Berghmans, H. Thienpont, "Phase and group modal birefringence of triple-defect photonic crystal fibers," J. Opt. A, Pure Appl. Opt. 7, 763-766 (2005).
  18. M. J. Steel, R. M. Osgood, "Elliptical-hole photonic crystal fibers," Opt. Lett. 26, 229-231 (2001).
  19. M. J. Steel, R. M. Osgood, "Polarization and dispersive properties of elliptical-hole photonics crystal fibers," J. Lightw. Technol. 19, 495-503 (2001).
  20. N. A. Issa, M. A. V. Eijkelenborg, M. Fellew, F. Cox, G. Henry, M. C. J. Large, "Fabrication and study of microstructured optical fibers with elliptical holes," Opt. Lett. 29, 1336-1338 (2004).
  21. K. Saitoh, M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
  22. R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, O. L. Alerhand, "Accurate theoretical analysis of photonic band-gap matetrials," Phys. Rev. B, Condens. Matter 48, 8434-8437 (1993).
  23. P. G. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited