OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 26, Iss. 11 — Jun. 1, 2008
  • pp: 1510–1518

Polymer-Based Long-Range Surface Plasmon Polariton Waveguides for 10-Gbps Optical Signal Transmission Applications

Jung Jin Ju, Suntak Park, Min-su Kim, Jin Tae Kim, Seung Koo Park, Yoon Jung Park, and Myung-Hyun Lee

Journal of Lightwave Technology, Vol. 26, Issue 11, pp. 1510-1518 (2008)


View Full Text Article

Acrobat PDF (962 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We present characteristics of very thin Au strip waveguides based on long-range surface plasmon polaritons (LR-SPPs) along thin Au strips embedded in polymers. We also report a 10 Gbps optical signal transmission via LR-SPPs with the pig-tailed Au strip waveguide at a telecommunication wavelength of 1.55 $\mu{\hbox {m}}$. We limited the thickness, width, and length up to $\sim$20nm, $\sim {\hbox {10}}\ \mu{\hbox {m}}$, and $\sim$5 cm, respectively, for practical applications. At 1.55 $\mu{\hbox {m}}$, loss properties of the Au strip waveguides were theoretically and experimentally evaluated with thickness, width and cladding material. The lowest propagation loss of $\sim$1.4dB/cm was experimentally obtained with the 14-nm-thick and 2-$\mu{\hbox {m}}$-wide Au strip. With a single-mode fiber, the lowest coupling loss of less than 0.1 dB/facet was achieved with the 14-nm-thick and 7.5-$\mu{\hbox {m}}$-wide Au strip. The lowest insertion loss was obtained 7.7dB with the 14-nm-thick, 5-$\mu{\hbox {m}}$-wide, and 1.5-cm-long Au strip. The propagation loss was improved approximately 30% for the 17-nm-thick Au strip with lowering the refractive index of the cladding polymer by 0.01. In the 10 Gbps optical signal transmission experiment, the LR-SPP waveguide exhibits an excellent eye opening and a 2.2 dB power penalty at $10^{-12}$ bit error rate. These all results indicate that the LR-SPP waveguide is a potential transmission line for optical interconnects to overcome inherent problems in electric interconnects.

© 2008 IEEE

Citation
Jung Jin Ju, Suntak Park, Min-su Kim, Jin Tae Kim, Seung Koo Park, Yoon Jung Park, and Myung-Hyun Lee, "Polymer-Based Long-Range Surface Plasmon Polariton Waveguides for 10-Gbps Optical Signal Transmission Applications," J. Lightwave Technol. 26, 1510-1518 (2008)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-26-11-1510


Sort:  Year  |  Journal  |  Reset

References

  1. M.-H. Lee, J. J. Ju, S. Park, J. Y. Do, S. K. Park, "Polymer-based devices for optical communications," ETRI J. 24, 259-269 (2002).
  2. W. L. Barnes, A. Dereux, T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
  3. R. Charbonneau, P. Berini, E. Berolo, E. Lisicka-Shrzek, "Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width," Opt. Lett. 25, 844-846 (2000).
  4. T. Nikolajsen, K. Leosson, I. Salakhutdinov, S. I. Bozhevolnyi, "Polymer-based surface-plasmon-polariton stripe waeguides at telecommunication wavelengths," Appl. Phys. Lett. 82, 668-670 (2003).
  5. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, S. I. Bozhevolnyi, "Integrated optical components utilizing long-range surface plasmon polaritons," J. Lightw. Technol. 23, 413-422 (2005).
  6. R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, P. Berini, "Passive integrated optics elements based on long-range surface plasmon polaritons," J. Lightw. Technol. 24, 477-494 (2006).
  7. R. Charbonneau, N. Lahoud, G. Mattiussi, P. Berini, "Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons," Opt. Exp. 13, 977-984 (2005).
  8. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Laluet, T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonaors," Nature 440, 508-511 (2006).
  9. A. Boltasseva, S. I. Bozhevolnyi, "Directional couplers using long-range surface plasmon polarition waveguides," IEEE J. Sel. Topic. Quantum Electron. 12, 1233-1241 (2006).
  10. Z. Han, L. Liu, E. Forsberg, "Ultra-compact directional couplers and Mach–Zehnder interferometers employing surface plasmon polaritions," Opt. Commun. 259, 690-695 (2006).
  11. S. Park, S. H. Song, "Polymeric variable optical attenuator based on long range surface plasmon polaritons," Electron. Lett. 42, 402-404 (2006).
  12. T. Nikolajsen, K. Leosson, S. I. Bozhevolnyi, "Surface plasmon polariton based modulators and switches operating at telecom wavelengths," Appl. Phys. Lett. 88, 5833-5835 (2004).
  13. H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, S. I. Kim, "Vertical coupling of long-range surface plasmon polaritons," Appl. Phys. Lett. 88, 011110 (2006).
  14. N. Savage, "Linking with light," IEEE Spectrum 32-36 (2002).
  15. B. Casper, G. Balamurugan, J. E. Jaussi, J. Kennedy, M. Mansuri, F. O'Mahony, R. Mooney, "Future microprocessor interfaces: Analysis, design and optimization," Proc. IEEE 2007 Custom Integrated Circuits Conf. (2006) pp. 479-486.
  16. http://www.chemoptics.co.kr.
  17. Numerical Techniques for Microwave and Millimeter-Wave Passive Structures (Wiley, 1989).
  18. Handbook of Optical Constants of Solids (Academic, 1985).
  19. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures," Phys. Rev. B 61, 10484-10503 (2000).
  20. M.-s. Kim, S. Park, J. J. Ju, J. T. Kim, S. K. Park, W.-K. Kim, M.-H. Lee, "‘Metal binding factor’—A core parameter for long-range surface-plasmon-polariton modes," Proc. CLEO/Pacific Rim (2007) pp. 806-807.
  21. J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, M.-H. Lee, "Low-loss polymer-based long-range surface plasmon-polariton waveguide," IEEE Photon. Technol. Lett. 19, 1374-1376 (2007).
  22. J. J. Ju, M.-s. Kim, S. Park, J. T. Kim, S. K. Park, M.-H. Lee, "10 Gbps optical signal transmission via long-range surface plasmon polariton waveguide," ETRI J. 29, 808-810 (2007).
  23. J. J. Ju, S. Park, M.-s. Kim, J. T. Kim, S. K. Park, Y. J. Park, M.-H. Lee, "40 Gbit/s light signal transmission in long-range surface plasmon waveguides," ETRI J., Appl. Phys. Lett. 91, 171117-1-171117-3 (2007).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited