OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 26, Iss. 11 — Jun. 1, 2008
  • pp: 1524–1531

Silicon Optical Nanocavities for Multiple Sensing

Ching Eng Png and Soon Thor Lim

Journal of Lightwave Technology, Vol. 26, Issue 11, pp. 1524-1531 (2008)


View Full Text Article

Acrobat PDF (1142 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

This paper investigates an optical nanocavity sensor based on a 1-D photonic bandgap. The sensor is unique in that it provides high $Q$-factor (sensitivity), and low attenuation and wavelength variation. It incorporates an optical splitter/combiner structure in realizing multiple sensing. Active sensing can be achieved by implementing a p–i–n diode. The optical diode requires an on state power of 81 nW with rise and fall times of 0.2 ns and 0.043 ns, respectively. The sensitivity of the active sensor, at 120, is a magnitude higher than conventional surface sensing and is characterized with respect to the optical phase change and by the diode biasing voltage. It will be shown that the aspect of multiple sensing, resonant wavelengths, the $Q$-factor and transmission can be optimized by tuning the length of the cavity and the radius of the two innermost air holes. This method allows ease of fabrication by not having to vary the waveguide width and height to obtain tuning effects.

© 2008 IEEE

Citation
Ching Eng Png and Soon Thor Lim, "Silicon Optical Nanocavities for Multiple Sensing," J. Lightwave Technol. 26, 1524-1531 (2008)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-26-11-1524


Sort:  Year  |  Journal  |  Reset

References

  1. W. Lukosz, "Principles and sensitivity of integrated optical and surface plasmon sensors for direct affinity sensing and munosensing," Biosensors Bioelectron. 6, 215-225 (1991).
  2. D. Clerc, W. Lukosz, "Integrated optical grating coupler as refractormeter and (bio-)chemical sensor," Sen. Actuators B, Chem. 11, 461-465 (1993).
  3. B. J. Luff, J. S. Wilkinson, J. Piehler, U. Hollenbach, J. Ingenhoff, N. Fabricius, "Integrated optical Mach-Zehnder biosensors," J. Lightw. Technol. 16, 583-592 (1998).
  4. S. T. Lim, C. E. Png, E. P. Li, "Electromagnetic components in silicon-on-insulator (SOI) waveguide for biosensing applications," Proc. 17th Int. Zurich Symp. Electromagnetic Compatibility (2006) pp. 77-80.
  5. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, "Phonotic-bandgap mocrocavities in optical waveguides," Nature 390, 143-145 (1997).
  6. C. E. Png, S. T. Lim, E. P. Li Graham, T. Reed, "Tunable and sensitive biophotonic waveguides based on photonic-bandgap microcavities," IEEE Trans. Nanotechnol. 5, 478-484 (2006).
  7. D. J. Ripin, K. Y. Lim, G. S. Petrich, P. R. Villeneuve, S. Fan, E. R. Thoen, J. D. Joannopoulos, E. P. Ippen, L. A. Kolodziejski, "One-dimensional photonic bandgap microcavities for strong optical). confinement in GaAs and GaAs/Al$_{x}$O$_{y}$ Semiconductor waveguides," J. Lightw. Technol. 17, 2152-2160 (1999).
  8. B. Schmidt, Q. Xu, J. Shakya, S. Manipatruni, M. Lipson, "Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra small modal volumes," Opt. Express 15, 3140-3148 (2007).
  9. http://www.cst.com.
  10. R. A. Soref, B. R. Bennett, "Kramers-Kronig analysis of E-O switching in silicon," SPIE Integrated Opt. Circuit Emg. 704, 32-37 (1986).
  11. R. A. Soref, B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. QE-23, 123-129 (1987).
  12. C. K. Tang, G. T. Reed, A. J. Walton, A. G. Rickman, "Low-loss, single-mode, optical phase modulator in SIMOX material," J. Lightw. Technol. 12, 1394-1400 (1994).
  13. P. D. Hewitt, G. T. Reed, "Improved modulation performance of a silicon p–i–n device by trench isolation," J. Lightw. Technol. 19, 387 (2001).
  14. C. E. Png, S. P. Chan, S. T. Lim, G. T. Reed, "Optical phase modulators for MHz and GHz modulation in silicon-on-insulator (SOI)," J. Lightw. Technol. 22, 1573-1583 (2004).
  15. I. E. Day, I. Evans, A. Knights, F. Hopper, S. Roberts, J. Johnston, S. Day, J. Luff, H. Tsang, M. Asghari, "Tapered silicon waveguides for low insertion loss highly-efficient high-speed electronic variable optical attenuators," Proc. OFC (2003) pp. 6-8.
  16. I. E. Day, S. W. Roberts, R. O'Carroll, A. Knights, P. Sharp, G. F. Hopper, B. J. Luff, M. Asghari, "Single-chip variable optical attenuator and multiplexer subsystem integration," Proc. OFC (2002) pp. 72-73.
  17. A. Sakai, T. Fukazawa, T. Baba, "Low loss ultra-small branches in a silicon photonic wire waveguide," IEICE Trans. Electron. E85-C, 1033-1038 (2002).
  18. K. K. Lee, D. R. Lim, H. Luan, A. Agarwal, J. Foresi, L. C. Kimerling, "Effect of size and roughness on light transmission in aSi/SiO2," IEICE Trans. Electron. E85-C, 1033-1038 (2002).
  19. S. T. Lim, C. E. Png, Y. L. Ang, E. A. Ong, "Singlemode, polarization-independent submicron silicon waveguides based on geometrical adjustments," Opt. Express 15, 11061-11072 (2007).
  20. S. T. Lim, C. E. Png, F. Y. Gardes, G. T. Reed, "Optically switched arrayed waveguide gratings using phase modulation," IEEE J. Sel. Topics Quantum Electron. 12, 1461-1468 (2006).
  21. Y. A. V. , S. J. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express 12, 1622-1631 (2004).
  22. P. Dumon, W. Bogaerts, J. Van Campenhout, V. Wiaux, J. Wouters, S. Beckx, R. Baets, "Low—Loss photonic wires and compact ring resonators in silicon-on-insulator," LEO Benelux Annual Symp. Enschede, The Netherlands (2003).
  23. R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, R. M. Osgood, "Ultracompact corner0mirrors and T-branches in silicon-on-insulator," IEEE Photon. Technol. Lett. 14, 65-67 (2002).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited