OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 26, Iss. 13 — Jul. 1, 2008
  • pp: 1986–1992

Modeling the Response of a Long-Period Fiber Grating to Ambient Refractive Index Change in Chemical Sensing Applications

Hannes Hochreiner, Michael Cada, and Peter D. Wentzell

Journal of Lightwave Technology, Vol. 26, Issue 13, pp. 1986-1992 (2008)


View Full Text Article

Acrobat PDF (201 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

The transmittance spectra of a long-period fiber grating element immersed in different mixtures of water and dimethyl sulfoxide were recorded. The obtained data were compared with a theoretical model based on linearly polarized modes treated with a coupled-mode approach. Excellent agreement between the measurements and theoretical results was found over a wide wavelength range.

© 2008 IEEE

Citation
Hannes Hochreiner, Michael Cada, and Peter D. Wentzell, "Modeling the Response of a Long-Period Fiber Grating to Ambient Refractive Index Change in Chemical Sensing Applications," J. Lightwave Technol. 26, 1986-1992 (2008)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-26-13-1986


Sort:  Year  |  Journal  |  Reset

References

  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightw. Technol. 14, 58-65 (1996).
  2. C. C. Ye, S. W. James, R. P. Tatam, "Simultaneous temperature and bend sensing with long-period fiber gratings," Opt. Lett. 25, 1007-1009 (2000).
  3. V. Bhatia, D. Campbell, R. O. Claus, "Simultaneous strain and temperature measurement with long-period gratings," Opt. Lett. 22, 648-650 (1997).
  4. H. J. Patrick, C. C. Chang, S. T. Vohra, "Long period fobre gratings for structural bend sensing," Electron. Lett. 34, 1773-1775 (1998).
  5. X. Shu, D. Huang, "Highly sensitive chemical sensor based on the measurement of the separation of dual resonant peaks in a 100-µm-period fiber grating," Opt. Commun. 171, 65-69 (1999).
  6. T. Allsop, L. Zhang, I. Bennion, "Detection of organic aromatic compounds in paraffin by a long-period fiber grating optical sensor with optimized sensitivity," Opt. Commun. 191, 181-190 (2001).
  7. R. Falate, R. C. Kamikawachi, M. Müller, H. J. Kalinowski, J. L. Fabris, "Fiber optic sensors for hydrocarbon detection," Sens. Actuators B 105, 430-436 (2005).
  8. H.-P. Loock, R. S. Brown, J. A. Barnes, N. R. Trefiak, K. L. Laugesen, G. Nemova, Long period grating sensor methods and apparatus U.S. Patent Application no. 60/576 628 (2004).
  9. S. W. James, R. P. Tatam, "Optical fibre long-period grating sensors: Characteristics and application," Meas. Sci. Technol. 14, R49-R61 (2003).
  10. B. H. Lee, Y. Liu, S. B. Lee, S. S. Choi, J. N. Jang, "Displacements of the resonant peaks of a long-period fiber grating induced by a change of ambient refractive index," Opt. Lett. 22, 1769-1771 (1997).
  11. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  12. T. Erdogan, "Fiber grating spectra," J. Lightw. Technol. 15, 1277-1294 (1997).
  13. D. Gloge, "Weakly guiding fibers," Appl. Opt. 10, 2252-2258 (1971).
  14. D. Marcuse, Dielectric Optical Waveguides (Academic, 1991).
  15. H. J. Patrick, A. D. Kersey, F. Bucholtz, "Analysis of the response of long period fiber gratings to external index of refraction," J. Lightw. Technol. 16, 1606-1612 (1998).
  16. T. Erdogan, "Cladding-mode resonances in short- and long-period fiber grating filters," J. Opt. Soc. Amer. A 14, 1760-1773 (1997).
  17. C. Yeh, G. Lindgren, "Computing the propagation characteristics of radially stratified fibers: An efficient method," Appl. Opt. 16, 483-493 (1977).
  18. C. Tsao, Optical Fibre Waveguide Analysis (Oxford Univ. Press, 19921).
  19. T. Allsop, D. J. Webb, I. Bennion, "A comparison of the sensing characteristics of long period gratings written in three different types of fibers," Opt. Fiber Technol. 9, 210-223 (2003).
  20. E. Anemogiannis, E. N. Glytsis, T. K. Gaylord, "Transmission characteristics of long-period fiber gratings having arbitrary azimuthal/radial refractive index variations," J. Lightw. Technol. 21, 218-227 (2003).
  21. V. Bhatia, Properties and sensing applications of long-period gratings Ph.D. dissertation Virginia Polytechnic Inst. and State Univ.BlacksburgVA (1996).
  22. P. Palai, M. N. Satyanarayan, M. Das, K. Thyagarajan, P. B. Pal, "Characterisation and simulation of long period gratings fabricated using electric discharge," Opt. Commun. 193, 181-185 (2001).
  23. I. del Villar, I. R. Matías, F. J. Arregui, P. Lalanne, "Optimization of sensitivity in long period fiber gratings with overlay deposition," Opt. Expr. 13, 56-69 (2005).
  24. A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, M. Giordano, "Mode transition in high refractive index coated long period gratings," Opt. Expr. 14, 19-34 (2006).
  25. A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, M. Giordano, G. Guerra, "Coated long-period fiber gratings as high-sensitivity optochemical sensors," J. Lightw. Technol. 24, 1776-1786 (2006).
  26. I. M. Ishaq, A. Quintela, S. W. James, G. J. Ashwell, J. M. Lopez-Higuera, R. P. Tatam, "Modification of the refractive index response of long period gratings using thin film overlays," Sens. Actuators B 107, 738-741 (2005).
  27. Z. Wang, J. R. Heflin, R. H. Stolen, S. Ramachandran, "Highly sensitive optical response of optical fiber long period gratings to nanometer-thick ionic self-assembled multilayers," Appl. Phys. Lett. 86, 223104 (2005).
  28. Z. Wang, J. R. Heflin, R. H. Stolen, S. Ramachandran, "Analysis of optical response of long period fiber gratings to nm-thick thin-film coatings," Opt. Expr. 13, 2808-2813 (2005).
  29. I. del Villar, M. Achaerandio, I. R. Martín, F. J. Arregui, "Deposition of overlays by electrostatic self-assambly in long-period fiber gratings," Opt. Lett. 30, 720-722 (2005).
  30. I. del Villar, I. R. Martín, F. J. Arregui, "Influence on cladding mode distribution of overlay deposition on long-period fiber gratings," J. Opt. Soc. Amer. A 23, 651-658 (2006).
  31. I. del Villar, I. R. Matías, F. J. Arregui, M. Achaerandio, "Nanodeposition of materials with complex refractive index in long-period fiber gratings," J. Lightw. Technol. 23, 4192-4199 (2005).
  32. V. Bhatia, A. M. Vengsarkar, "Optical fiber long-period grating sensors," Opt. Lett. 21, 692-694 (1996).
  33. Y. Koyamada, "Numerical analysis of core-mode to radiation-mode coupling in long-period fiber gratings," IEEE Photon. Technol. Lett. 13, 308-310 (2001).
  34. R. Hou, Z. Ghassemlooy, A. Hassan, C. Lu, K. P. Dowker, "Modelling of long-period fibre grating response to refractive index higher than that of cladding," Meas. Sci. Technol. 12, 1709-1713 (2001).
  35. R. Mehra, "Application of refractive index mixing rules in binary systems of hexadecane and heptadecane with n-alkanols at different temperatures," Proc. Indian Acad. Sci. (Chem. Sci.) 115, 147-154 (2003).
  36. T. M. Aminabhavi, P. Munk, "Excess polarizability and volume of mixing and their effect on the partial specific volume and the refractive increment of polymers in mixed solvents," Macromolecules 12, 1186-1194 (1979).
  37. The International Association for the Properties of Water and SteamRelease on the refractive index of ordinary water substance as a function of wavelength, temperature and pressure (1997).
  38. H. El-Kashef, "The necessary requirements imposed on polar dielectric laser dye solvents – II," Phys. B 311, 376-379 (2002).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited