OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 26, Iss. 23 — Dec. 1, 2008
  • pp: 3752–3762

Fiber-Based Slow-Light Technologies

George M. Gehring, Robert W. Boyd, Alexander L. Gaeta, Daniel J. Gauthier, and Alan E. Willner

Journal of Lightwave Technology, Vol. 26, Issue 23, pp. 3752-3762 (2008)

View Full Text Article

Acrobat PDF (830 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


A review of current fiber-based technologies capable of producing slow-light effects is presented, with emphasis on the applicability of these technologies to telecommunications. We begin with a review of the basic concepts of phase velocity, group velocity, and group delay. We then present a survey of some of the figures of merit used to quantify the engineering properties of slow-light systems. We also present a description of several of the physical processes that are commonly used to induce a slow-light effect. Finally, a review of some recent advances in this field is presented.

© 2008 IEEE

George M. Gehring, Robert W. Boyd, Alexander L. Gaeta, Daniel J. Gauthier, and Alan E. Willner, "Fiber-Based Slow-Light Technologies," J. Lightwave Technol. 26, 3752-3762 (2008)

Sort:  Year  |  Journal  |  Reset


  1. D. J. Blumenthal, P. R. Pruncal, J. R. Sauer, "Photonic packet switches: Architectures and experimental implementations," Proc. IEEE 82, 1650-1667 (1994) http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=333744.
  2. L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
  3. R. S. Tucker, P.-C. Ku, C. J. Chang-Hasnain, "Slow-light optical buffers: Capabilities and fundamental limitations," J. Lightwave Technol. 23, 4046-4066 (2005) http://jlt.osa.org/abstract.cfm?id=88006.
  4. P.-C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S.-W. Chang, S.-L. Chuang, "Slow light in semiconductor quantum wells," Opt. Lett. 29, 2291-2293 (2004) http://www.opticsinfobase.org/abstract.cfm?URI=ol-29-19-2291.
  5. R. W. Boyd, D. J. Gauthier, Progress in Optics (Elsevier Science, 2002) pp. 497-530.
  6. S. Inouye, R. F. Löw, S. Gupta, T. Pfau, A. Görlitz, W. Ketterle, "Amplification of light and atoms in a Bose–Einstein condensate," Phys. Rev. Lett. 85, 4225-4228 (2000).
  7. E. Podivilov, B. Sturman, A. Shumelyuk, S. Odoulov, "Light pulse slowing down up to 0.025 cm/s by photorefractive two-wave coupling," Phys. Rev. Lett. 91, 083902 (2003) http://link.aps.org/abstract/PRL/v91/e083902.
  8. A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, S. Jarabo, "Observation of superluminal and slow light propagation in erbium-doped optical fiber," Europhys. Lett. 73, 218-224 (2006).
  9. K. Y. Song, K. S. Abedin, K. Hotate, M. G. Herráez, L. Thévenaz, "Highly efficient Brillouin slow and fast light using $\hbox{As}_{2}\hbox{Se}_{3}$ chalcogenide fiber," Opt. Express 14, 5860-5865 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-5860.
  10. M. Herráez, K. Y. Song, L. Thévenaz, "Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering," Appl. Phys. Lett. 87, 081113 (2005).
  11. R. W. Boyd, Nonlinear Optics (Academic, 2003).
  12. Z. Lu, Y. Dong, Q. Li, "Slow light in multi-line Brillouin gain spectrum," Opt. Exp. 15, 1871-1877 (2007).
  13. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005) http://link.aps.org/abstract/PRL/v94/e153902.
  14. L. J. Wang, A. Kuzmich, A. Dogariu, "Gain-assisted superluminal light propagation," Nature 406, 277-279 (2000).
  15. Z. Shi, R. Pant, Z. Zhu, M. D. Stenner, M. A. Neifeld, D. J. Gauthier, R. W. Boyd, "Design of a tunable time-delay element using multiple gain lines for increased fractional delay with high data fidelity," Opt. Lett. 32, (2007).
  16. R. Pant, M. D. Stenner, M. A. Neifeld, Z. Shi, R. W. Boyd, D. J. Gauthier, "Maximizing the opening of eye-diagrams for slow-light systems," Appl. Opt. 46, 6513-6519 (2007).
  17. R. S. Tucker, P. C. Ku, C. J. Chang-Hasnain, "Delay-bandwidth product and storage density in slow-light optical buffers," Electron. Lett. 41, 208-209 (2005).
  18. J. B. Khurgin, "Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: Comparative analysis," J. Opt. Soc. Amer. B 22, 1062-1074 (2005).
  19. J. B. Khurgin, "Performance limits of delay lines based on optical amplifiers," Opt. Exp. 31, 948-950 (2006).
  20. D. A. B. Miller, "Fundamental limit for optical components," J. Opt. Soc. Amer. B 24, A1-A18 (2007) http://josab.osa.org/abstract.cfm?id=139978.
  21. D. A. B. Miller, "Fundamental limit to linear one-dimensional slow light structures," Phys. Rev. Lett. 99, 203903 (2007).
  22. L. Zhang, T. Luo, C. Yu, W. Zhang, A. E. Willner, "Pattern dependence of data distortion in slow-light elements," J. Lightwave Technol. 25, 1754-1760 (2007) http://www.opticsinfobase.org/abstract.cfm?URI=JLT-25-7-1754.
  23. C. Yu, T. Luo, L. Zhang, A. E. Willner, "Data pulse distortion induced by a slow light tunable delay line in optical fiber," Opt. Lett. 32, 20-22 (2007) http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-1-20.
  24. B. Zhang, L. Yan, I. Fazal, L. Zhang, A. E. Willner, Z. Zhu, D. J. Gauthier, "Slow light on Gbps differential-phase-shift-keying signals," Opt. Exp. 15, 1878-1883 (2007) http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-4-1878.
  25. E. Shumakher, N. Orbach, A. Nevet, D. Dahan, G. Eisenstein, "On the balance between delay, bandwidth and signal distortion in slow light systems based on stimulated Brillouin scattering in optical fibers," Opt. Exp. 14, 5877-5884 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-5877.
  26. P. Ginzburg, M. Orenstein, "Slow light and voltage control of group velocity in resonantly coupled quantum wells," Opt. Exp. 14, 12467-12472 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=ol-13-25-12467.
  27. P. Ku, C. Chang-Hasnain, S. Chuang, "Variable semiconductor ail-optical buffer," Electron. Lett. 38, 1581-1583 (2002).
  28. H. Shin, A. Schweinsberg, G. Gehring, K. Schwertz, H. J. Chang, R. W. Boyd, Q.-H. Park, D. J. Gauthier, "Reducing pulse distortion in fast-light pulse propagation through an erbium-doped fiber amplifier," Opt. Lett. 32, 906-908 (2007) http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-8-906.
  29. G. P. Agrawal, Lightwave Technology: Components and Devices (Wiley-Interscience, 2004).
  30. K. Y. Song, M. Herráez, L. Thévenaz, "Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering," Opt. Exp. 13, 82-88 (2005) http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-1-82.
  31. J. Sharping, Y. Okawachi, A. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Exp. 13, 6092-6098 (2005) http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-16-6092.
  32. A. B. Matsko, Y. V. Rostovtsev, M. Fleischhauer, M. O. Scully, "Anomalous stimulated brillouin scattering via ultraslow light," Phys. Rev. Lett. 86, 2006-2009 (2001).
  33. Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, A. W. Willner, "Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber," J. Opt. Soc. Amer. B 22, 2378-2384 (2005) http://www.opticsinfobase.org/abstract.cfm?id=86005.
  34. V. P. Kalosha, L. Chen, X. Bao, "Slow and fast light via SBS in optical fibers for short pulses and broadband pump," Opt. Exp. 14, 12693-12703 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-12693.
  35. Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta, Q. Xu, M. Lipson, "All-optical slow-light on a photonic chip," Opt. Exp. 14, 2317-2322 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-6-2317.
  36. D. Dahan, G. Eisenstein, "Tunable all optical delay via slow and fast light propagation in a raman assisted fiber optical parametric amplifier: A route to all optical buffering," Opt. Exp. 13, 6234-6249 (2005).
  37. E. Shumakher, A. Willinger, R. Blit, D. Dahan, G. Eisenstein, "Large tunable delay with low distortion of 10 Gbit/s data in a slow light system based on narrow band fiber parametric amplification," Opt. Exp. 14, 8540-8545 (2006).
  38. L. Yi, W. Hu, Y. Su, M. Gao, L. Leng, "Design and system demonstration of a tunable slow-light delay line based on fiber parametric process," IEEE Photon. Technol. Lett. 18, 2575-2577 (2006).
  39. M. S. Bigelow, N. N. Lepeshkin, R. W. Boyd, "Observation of ultraslow light propagation in a ruby crystal at room temperature," Phys. Rev. Lett. 90, 113903 (2003).
  40. M. S. Bigelow, N. N. Lepeshkin, R. W. Boyd, "Superluminal and slow light propagation in a room-temperature solid," Science 301, 200-202 (2003).
  41. J. Mørk, R. Kjær, M. van der Poel, K. Yvind, "Slow light in a semiconductor waveguide at gigahertz frequencies," Opt. Exp. 13, 8136-8145 (2005) http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-20-8136.
  42. P. Palinginis, S. Crankshaw, F. Sedgwick, E.-T. Kim, M. Moewe, C. J. Chang-Hasnain, H. Wang, S.-L. Chuang, "Ultraslow light ( $<$200 m/s) propagation in a semiconductor nanostructure," Appl. Phys. Lett. 87, 171102 (2005) http://link.aip.org/link/?APL/87/171102/1.
  43. H. Su, S. L. Chuang, "Room temperature slow and fast light in quantum-dot semiconductor optical amplifiers," Appl. Phys. Lett. 88, 61102 (2006) http://link.aip.org/link/?APL/88/061102/1.
  44. G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, R. W. Boyd, "Observation of backwards pulse propagation through a medium with a negative group velocity," Science 312, 895-897 (2006).
  45. N. G. Basov, R. V. Ambartsumyan, V. S. Zuev, P. G. Kryukov, V. S. Letokhov, "Nonlinear amplification of light pulses," Sov. Phys. JETP 23, 16 (1966).
  46. R. W. Boyd, D. J. Gauthier, A. L. Gaeta, A. E. Willner, "Maximum time delay achievable on propagation through a slow-light medium," Phys. Rev. A 71, 23801 (2005) http://link.aps.org/abstract/PRA/v71/e023801.
  47. H. Su, S.-L. Chuang, "Room-temperature slow light with semiconductor quantum-dot devices," Opt. Lett. 31, 271-273 (2006).
  48. S. E. Harris, J. E. Field, A. Imamoğlu, "Nonlinear optical processes using electromagnetically induced transparency," Phys. Rev. Lett. 64, 1107-1110 (1990).
  49. F. D. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, M. D. Lukin, "Storage of light in atomic vapor," Phys. Rev. Lett. 86, 783-786 (2001).
  50. H. Kang, G. Hernandez, Y. Zhu, "Superluminal and slow light propagation in cold atoms," Phys. Rev. A 70, 11801 (2004) http://link.aps.org/abstract/PRA/v70/e011801.
  51. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, P. R. Hemmer, "Observation of ultraslow and stored light pulses in a solid," Phys. Rev. Lett. 88, 23602 (2001).
  52. M. Phillips, H. Wang, "Spin coherence and electromagnetically induced transparency via exciton correlations," Phys. Rev. Lett. 89, 186401 (2002).
  53. S.-W. Chang, S. L. Chuang, C. J. Chang-Hasnain, H. Wang, "Slow light using spin coherence and v-type electromagnetically induced transparency in [110] strained quantum wells," J. Opt. Soc. Amer. B 24, 849-859 (2007) http://www.opticsinfobase.org/abstract.cfm?URI=josab-24-4-849.
  54. A. K. Patnaik, J. Q. Liang, K. Hakuta, "Slow light propagation in a thin optical fiber via electromagnetically induced transparency," Phys. Rev. A 66, 63808 (2002).
  55. S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, "Low-light-level optical interactions with rubidium vapor in a photonic bandgap fiber," Phys. Rev. Lett. 97, 023603 (2006).
  56. S. Ghosh, J. E. Sharping, D. G. Ouzounov, A. L. Gaeta, "Resonant optical interactions with molecules confined in photonic bandgap fibers," Phys. Rev. Lett. 94, 093902 (2005).
  57. C. Hensley, D. H. Broaddus, C. B. Shaffer, A. L. Gaeta, "Photonic bandgap fiber gas cell fabricated using femtosecond micromachining," Opt. Exp. 15, 6690-6695 (2007).
  58. J. E. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. E. Willner, A. L. Gaeta, "All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion," Opt. Exp. 13, 7872-7877 (2005) http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-20-7872.
  59. Y. Wang, C. Yu, L. S. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, Y. Okawachi, J. E. Sharping, A. L. Gaeta, "44-ns continuously-tunable dispersionless optical delay element using a PPLN waveguide with a two pump configuration, DCF, and a dispersion compensator," IEEE Photon. Technol. Lett. 19, 861-863 (2007).
  60. Y. Okawachi, J. E. Sharping, C. Xu, A. L. Gaeta, "Large tunable optical delays via self-phase modulation and dispersion," Opt. Exp. 14, 12022-12027 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-25-12022.
  61. S. Oda, A. Maruta, "All-optical tunable delay line based on soliton self-frequency shift and filtering broadened spectrum due to self-phase modulation," Opt. Express 14, 7895-7902 (2006).
  62. P. Z. Dashti, C. S. Kim, Q. Li, H. P. Lee, "Demonstration of a novel all-fiber bandpass acousto-optic tunable filter," Proc. OFC'05 (2005).
  63. S. Longhi, M. Marano, P. Laporta, O. Svelto, "Propagation, manipulation, and control of picosecond optical pulses at 1.5 $\mu{\hbox {m}}$ in fiber Bragg gratings," J. Opt. Soc. Amer. B 19, 2742 (2002).
  64. L. Poladian, "Group-delay reconstruction for fiber bragg gratings in reflection and transmission," Opt. Lett. 22, 1571 (1997).
  65. G. Lenz, B. J. Eggleton, C. K. Madsen, R. E. Slusher, "Optical delay lines based on optical filters," IEEE J. Quantum Electron. 37, 525 (2001).
  66. B. J. Eggleton, C. M. de Sterke, R. E. Slusher, "Nonlinear pulse propagation in Bragg gratings," J. Opt. Soc. Amer. B 14, 2980 (1997).
  67. D. Janner, G. Galzerano, G. D. Valle, P. Laporta, S. Longhi, "Slow light in periodic superstructure Bragg gratings," Phys. Rev. E 72, (2005) http://link.aps.org/doi/10/1103/PhysRevE.72.056605.
  68. S. Longhi, "Group delay tuning in active fiber bragg gratings: From superluminal to subluminal pulse reflection," Phys. Rev. E 72, (2005) http://link.aps.org/doi/10.1103/PhysRevE.72.056614.
  69. J. T. Mok, C. M. de Sterke, B. J. Eggleton, "Delay-tunable gap-soliton-based slow-light system," Opt. Exp. 14, 11987-11996 (2006).
  70. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, J. E. Sipe, "Bragg grating solitons," Phys. Rev. Lett. 76, 1627-1630 (1996).
  71. J. T. Mok, C. M. de Sterke, I. C. M. Littler, B. J. Eggleton, "Dispersionless slow light using gap solitons," Nature Phys. 2, 775-780 (2006).
  72. M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. Dawes, D. J. Gauthier, "Distortion management in slow-light pulse delay," Opt. Exp. 13, 9995-10002 (2005) http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-25-9995.
  73. T. Schneider, M. Juker, K. U. Lauterback, R. Henker, "Distortion reduction in cascaded slow light delays," Electron. Lett. 42, 1110-1112 (2006).
  74. T. Schneider, R. Henker, K. U. Lauterbach, M. Junker, "Comparison of delay enhancement mechanisms for SBS-based slow light systems," Opt. Exp. 15, 9606-9613 (2007).
  75. Z. Zhu, D. J. Gauthier, "Nearly transparent SBS slow light in an optical fiber," Opt. Exp. 14, 7238-7245 (2006).
  76. M. Herŕez, K. Y. Song, L. Thévenaz, "Arbitrary-bandwidth Brillouin slow light in optical fibers," Opt. Exp. 14, 1395-1400 (2006).
  77. Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, A. E. Willner, "Broadband SBS slow light in an optical fiber," J. Lightwave Technol. 25, 201-206 (2007) http://www.opticsinfobase.org/abstract.cfm?URI=JLT-25-1-201.
  78. K. Y. Song, K. Hotate, "25 GHz bandwidth Brillouin slow light in optical fibers," Opt. Lett. 32, 217-219 (2007) http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-3-217.
  79. S. Chin, M. Gonzalez-Herráez, L. Thévenaz, "Zero-gain slow & fast light propagation in an optical fiber," Opt. Exp. 14, 10684-10692 (2006).
  80. T. Schneider, M. Junker, K.-U. Lauterbach, "Potential ultra wide slow-light bandwidth enhancement," Opt. Exp. 14, 11 082-11 087 (2006) http://www.opticsexpress.org/abstract.cfm?uri=OE-14-23-11082.
  81. A. Minardo, R. Bemini, L. Zeni, "Low distortion Brillouin slow light in optical fibers using am modulation," Opt. Exp. 14, 5866-5876 (2006) http://www.opticsexpress.org/abstract.cfm?uri=OE-14-13-5866.
  82. A. Zadok, A. Eyal, M. Tur, "Extended delay of broadband signals in stimulated Brillouin scattering slow light using synthesized pump chirp," Opt. Exp. 14, 8498-8505 (2006) http://www.opticsexpress.org/abstract.cfm?uri=OE-14-19-8498.
  83. A. E. Willner, L. Zhang, T. Luo, C. Yu, W. Zhang, Y. Wang, "Data bit distortion induced by slow light in optical communication systems," Proc. SPIE (2006).
  84. T. Luo, L. Zhang, W. Zhang, C. Yu, A. E. Willner, "Reduction of pattern dependent distortion on data in an SBS-based slow light fiber element by detuning the channel away from the gain peak," Conference on Lasers and Electro-Optics (2006) paper CThCC4.
  85. B. Zhang, L.-S. Yan, J.-Y. Yang, I. Fazal, A. E. Willner, "Independent delay control and synchronization of multiple 2.5-gb/s channels within a single sbs slow-light medium," Conference on Lasers and Electro-Optics (2007) paper CTuB4.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited