OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 27, Iss. 1 — Jan. 1, 2009
  • pp: 68–76

Ultra-High-Speed Deeply Etched Electrooptic Polymer Modulator With Profiled Cross Section

T. Gorman, S. Haxha, and J. J. Ju

Journal of Lightwave Technology, Vol. 27, Issue 1, pp. 68-76 (2009)


View Full Text Article

Acrobat PDF (1227 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

In this paper, we present a novel ultra-high-speed polymer based electrooptic modulator that features a profiled, deeply etched cross section. We show that by profiling the side walls of the modulator and varying the thickness of the dielectric stack that broadband operation can be achieved whilst maintaining a very low drive voltage in a compact device. Initially a quasi-TEM analysis is undertaken in order to determine the modulators response to topographical variation followed by a full-wave analysis on the optimized device. The full-wave analysis is employed in order to determine any frequency dispersion effects with respect to the modulators characteristic impedance $Z_{c}$, microwave effective index $N_{m}$, microwave and dielectric losses $\alpha_{c}$ and $\alpha_{d}$, and the half-wave voltage-length product $V_{\pi}L$.

© 2009 IEEE

Citation
T. Gorman, S. Haxha, and J. J. Ju, "Ultra-High-Speed Deeply Etched Electrooptic Polymer Modulator With Profiled Cross Section," J. Lightwave Technol. 27, 68-76 (2009)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-27-1-68


Sort:  Year  |  Journal  |  Reset

References

  1. K. Noguchi, H. Miyazawa, O. Mitomi, "Frequency-dependent propagation of coplanar waveguide electrode on 100 GHz Ti: LiNbO$_{3}$ optical modulator," Electron Lett. 34, 661-662 (1998).
  2. T. Gorman, S. Haxha, "Design optimisation of Z-Cut lithium niobate electro-optic modulator with profiled metal electrodes and waveguides," J. Lightw. Technol. 25, 3722-3729 (2007).
  3. T. Gorman, S. Haxha, "Thin layer design of x-cut lithium niobate electro-optic modulator with slotted SiO$_{2}$ substrate," IEEE Photon. Technol. Lett. 20, 111-113 (2008).
  4. S. Haxha, B. M. A. Rahman, R. J. Langley, "Broadband and low-driving-power LiNbO$_{3}$ electro-optic modulators," Opt. Quantum Electron. 36, 1205-1220 (2004).
  5. A. Yariv, P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford Univ. Press, 2006).
  6. C. Zhang, L. R. Dalton, "Low V $\pi$ electro-optic modulators from CLD-1: Chromophore design and synthesis, material processing and characterization," Chem. Mater. 13, 3043-3050 (2001).
  7. M.-C. Oh, H. Zhang, C. Zhang, H. E. Y. Chang, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, L. R. Dalton, "Recent advances in electro-optic polymer modulators incorporating highly nonlinear chromophore," J. Sel. Topics Quantum Electron. 7, 826-835 (2001).
  8. D. M. Gill, A. Chowdhury, "Electro-optic polymer-based modulator design and performance for 40 Gb/s system applications," J. Lightw. Technol. 20, 2145-2153 (2002).
  9. V. M. N. Passaro, Head of Photonics Research Group, Politecnico di Bari, Bari, Italy, private communication (2007).
  10. S. Haxha, B. M. A. Rahman, K. T. V. Grattan, "Bandwidth estimation for ultra-high-speed lithium niobate modulators," Appl. Opt. 42, 2674-2682 (2003).
  11. M. Koshiba, Y. Tsuji, M. Nishio, "Finite-element modeling of broadband traveling-wave optical modulators," IEEE Trans. Microw. Theory Tech. 47, 1627-1633 (1999).
  12. B. T. Kuhlmey, H. C. Nguyen, M. J. Steel, B. J. Eggleton, "Confinement loss in adiabatic photonic crystal fiber tapers," J. Opt. Soc. Amer. 23, 1965-1974 (2006).
  13. M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, D. J. McGee, "Broadband modulation of light by using an electro-optic polymer," Science 298, 1401-1403 (2002).
  14. R. Moonsburger, K. Petermann, "4$\,\times\,$4 digital optical matrix switch using polymetric oversized rib waveguides," IEEE Photon. Technol. Lett. 10, 684-686 (1998).
  15. B. M. Azizur Rahman, V. Haxha, S. Haxha, K. T. V. Grattan, "Design optimisation of polymer electro-optic modulators," J. Lightw. Technol. 24, 3506-3513 (2006).
  16. S. S. A. Obayya, S. Haxha, B. M. A. Rahman, K. T. V. Grattan, "Optimisation of the optical properties of a deeply-etched semiconductor electro-optic modulator," J. Lightw. Technol. 21, 1813-1819 (2002).
  17. M. M. Howerton, R. P. Moeller, A. S. Greenblatt, R. Krahenbuhl, "Fully packaged, broadband LiNbO$_{3}$ modulator with low drive voltage," IEEE Photon. Technol. Lett. 12, 792-794 (2000).
  18. P. B. Johnson, R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
  19. B. Li, R. Dinu, D. Jin, D. Huang, B. Chen, A. Barklund, E. Miller, M. Moolayil, G. Yu, Y. Fang, L. Zheng, H. Chen, J. Vemagiri, "Recent advances in commercial electro-optic polymer modulator," Proc. Optical Fiber Communication Optoelectronics Conf., Asia (2007) pp. 115-117.
  20. Y. Tsuji, M. Koshiba, "Finite element beam propagation method with perfectly matched layer boundary conditions for three-dimensional optical waveguides," Int. J. Numer. Model. 13, 115-126 (2000).
  21. F. Ladouceur, P. Labeye, "A new general approach to optical waveguide path design," J. Lightw. Technol. 13, 481-491 (1995).
  22. R. Jedidi, R. Pierre, "High-order finite-element methods for the computation of bending loss in optical waveguides," J. Lightw. Technol. 25, 2618-2630 (2007).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited