OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 27, Iss. 10 — May. 15, 2009
  • pp: 1279–1285

Stimulate Brillouin Scattering Based Broadband Tunable Slow-Light Conversion in a Highly Nonlinear Photonic Crystal Fiber

Jianguo Liu, Tee-Hiang Cheng, Yong-Kee Yeo, Yixin Wang, Lifang Xue, Weifeng Rong, Luying Zhou, Gaoxi Xiao, Dawei Wang, and Xiaojun Yu

Journal of Lightwave Technology, Vol. 27, Issue 10, pp. 1279-1285 (2009)


View Full Text Article

Acrobat PDF (772 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

An integrated configuration is proposed to convert tunable slow light from signal to another frequency in a wide bandwidth by using a 70 m-long highly nonlinear photonic crystal fiber (HN-PCF). A 10 GHz RZ signal is delayed by a 10 Gbit/s $2 ^{31} -1$ pseudo random bit sequence (PRBS) stimulated Brillouin scattering (SBS) pump, and the slow light is converted to another frequency in a broadband by four-wave mixing (FWM). By this way, not only the slow light is converted, but the idler power is enhanced greatly. In our experiment, all-optical controlled 37.5 ps delay time is converted in a 40 nm bandwidth flatly, and 4.7 dB idler power is enhanced simultaneously. The experimental results are in good agreement with those of the theory.

© 2009 IEEE

Citation
Jianguo Liu, Tee-Hiang Cheng, Yong-Kee Yeo, Yixin Wang, Lifang Xue, Weifeng Rong, Luying Zhou, Gaoxi Xiao, Dawei Wang, and Xiaojun Yu, "Stimulate Brillouin Scattering Based Broadband Tunable Slow-Light Conversion in a Highly Nonlinear Photonic Crystal Fiber," J. Lightwave Technol. 27, 1279-1285 (2009)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-27-10-1279


Sort:  Year  |  Journal  |  Reset

References

  1. S. Chu, S. Wong, "Linear pulse propagation in a absorbing medium," Phys. Rev. Lett. 48, 738-741 (1982).
  2. Jiepeng, Zhang, G. Hernandez, Y. Zhu, "Slow light with cavity electromagnetically induced transparency," Opt. Lett. 33, 46-48 (2008).
  3. A. Yariv, Y. Xu, R. K. Lee, A. Schere, "Coupled-resonator optical waveguide: A proposal and analysis," Opt. Lett. 24, 711-713 (1999).
  4. S. V. Pishko, P. D. Sewell, T. M. Benson, S. V. Boriskina, "Efficient analysis and design of low-loss whispering-gallery-mode coupled resonator optical waveguide bends," J. Lightw. Technol. 25, 2487-2493 (2007).
  5. Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta, Q. Xu, M. Lipson, "All-optical slow-light on a photonic chip," Opt. Expr. 14, 2317-2322 (2006).
  6. F. Xia, L. Sekaric, Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nature Photon. 1, 65-71 (2007).
  7. A. Anre, M. D. Lukin, "Manipulating light pulses via dynamically controlled photonic band gap," Phys. Rev. Lett. 89, 143602 (2002).
  8. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, Takahashi, yokohama, "Extremely large group-velocity dispersion of line–defect waveguiding in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
  9. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
  10. Y. a. Vlasov, M. O'Boyle, H. F. Hamann, S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature (2005) pp. 65-69.
  11. A. zadok, O. Raz, A. Eyal, M. Tur, "Optically controlled low-distortion delay of GHz-wide radio-frequency signals using slow light in fibers," IEEE Photon. Technol. Lett. 19, 462-464 (2007).
  12. J. T. Mok, C. M. De Sterke, I. C. M. Littler, B. J. Eggleton, "Dispersionless slow light using gap solitons," Nature Phys. 2, 775-780 (2006).
  13. R. S. Tucher, "The role of optics and electronics in high-capacity routers," J. Lightw. Technol. 24, 4655-4673 (2006).
  14. Y. Okawachi, R. Salem, A. L. Gaeta, "Contimuous tunable delays at 10-Gb/s data rates using self-phase modulation and dispersion," J. Lightw. Technol. 25, 3710-3715 (2007).
  15. E. Mateo, F. Yaman, G. Li, "Control of four-wave mixing phase-matching condition using the Brillouin slow-light effect in fibers," Opt. Lett. 33, 488-490 (2008).
  16. S. Yang, H. Chen, C. qiu, M. Chen, M. Chen, S. Xie, J. Li, W. Chen, "Slow-light delay enhancement in small-core pure silica photonic crystal fiber based on Brillouin Scattering," Opt. Lett. 33, 95-97 (2008).
  17. C. Jauregui, P. Petropoulos, D. J. Richardson, "Brillouin assisted slow-ligth enhancement via Fabry-Perot cavity effects," Opt. Expr. 15, 5126-5135 (2007).
  18. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. boyd, A. L. Gaeta, "Tunable all-Optical delays via Brillouin slow light in a optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
  19. M. Gonzalez-Herraez, K.-Y. Song, L. Thevenaz, "Optically controlled slow and fast light in optical fibers using strimulated Brillouin scattering," Appl. Phys. Lett. 87, 081113 (2005).
  20. B. Zhang, L. Zhang, L. S. Yan, I. Fazal, J. Y. Yang, A. E. Willner, "Continuously-tunable, bit-rate variable OTDM using broadband SBS slow-light delay line," Opt. Expr. 15, 8317-8322 (2007).
  21. A. Cheng, M. P. Fok, C. Shu, "Wideband SBS slow light in a single mode fiber using a phase-modulated pump," CLEO 2007 Conf. BaltimoreMD paper JWA49.
  22. M. G. Herraez, K. Y. Song, L. Thevenaz, "Aribitrary-bandwidth Brillouin slow light in optical fibers," Opt. Expr. 14, 1395-1400 (2006).
  23. S. Yang, J. Cameron, J. Snoddy, L. Zou, X. Bao, "PRBS data delay in an all fiber slow light system based on SBS effect, NRZ vs. RZ," OFC 2006 Conf. AnaheimCA paper OWB6.
  24. Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, A. E. Willner, "Broadband SBS slow light in an optical fiber," IEEE J. Lightw. Technol. 25, 201206 (2007).
  25. K. Akimoto, J. Kani, M. Teshima, K. Iwatsuki, "Super-dense WDM transmission of spectrum-sliced incoherent light for wide-area access," J. Lightw. Technol. 21, 2715-2722 (2003).
  26. C. C. Lee, Y. K. Chen, S. K. Liaw, "Tunable and selective wavelength converter using degenerate fibre four-wave mixing with pump wavelength and polarisation controls," Electron. Lett. 34, 205-206 (1998).
  27. A. Zhang, M. S. Demokan, "Broadband wavelength converter based on four-wave mixing in a highly nonlinear photonic crystal fiber," Opt. Lett. 30, 2375-2377 (2005).
  28. S. O. Konorov, A. B. Fedotov, A. M. Zheltikov, "Enhanced four-wave mixing in a hollow-core photonic-crystal fiber," Opt. Lett. 28, 1448-1450 (2003).
  29. S. J. Jung, J. Y. Lee, D. Y. Kim, "Highly efficient phase-conjugation of a 1 $\mu$m pico-second Laguerre-Gaussian beam," Opt. Expr. 14, 35-43 (2006).
  30. V. V. Dvoyrin, V. M. Mashinsky, L. I. Bulatov, I. A. Bufetov, A. V. Shubin, M. A. Melkumov, E. F. Kustov, E. M. Dianov, A. A. Umnikov, V. F. Khopin, M. V. Yashkov, A. N. Guryanov, "Bismuth-doped-glass optical fibers—A new active medium for lasers and amplifiers," Opt. Lett. 31, 2966-2968 (2006).
  31. E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. Lamont, D. I. Yeom, B. J. Eggleton, "Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers," Opt. Expr. 15, 10324-10329 (2007).
  32. J. Liu, "Large anomalous dispersion at short wavelength and modal properties of photonic crystal fiber with large air holes," IEEE J. Quantum Electron. 42, 961-968 (2006).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited