OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 27, Iss. 10 — May. 15, 2009
  • pp: 1347–1354

Monte Carlo Investigation of Size-Dependent Impact Ionization Properties in InP Under Submicron Scale

Shiyu Chen, Kunyuan Xu, and Gang Wang

Journal of Lightwave Technology, Vol. 27, Issue 10, pp. 1347-1354 (2009)


View Full Text Article

Acrobat PDF (219 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

The impact ionization properties in InP have been studied by using an ensemble Monte Carlo (EMC) method. In our EMC model, analytical model which contains three conduction bands and three valance bands is adopted to describe the band structure. The electron and hole impact ionization rate is fitted to the available measurement in the wide range of electric field by using Keldysh formula. The steady properties of InP are presented and analyzed. Particularly, the impact ionization behaviors in InP under submicron scale are discussed in detail. It is found that the impact ionization coefficient is not only a function of the applied electric filed but also behaves a size-dependent property when the size is down to submicron scale. We also find that, the size-dependent impact ionization effect which results from the dead space effect and the confined size, can help to prevent the carriers from impact ionization. Finally, the ratio of the electron impact ionization coefficient and the hole impact ionization coefficient is further studied. By taking the size-dependent impact ionization effect into consideration, this ratio is no longer holding as a constant but changing with the size of the devices under the specific electric field. As the size scaling down, the ratio will tend to deviate from one unit, which may contribute to a new look at the noise theory of APD devices.

© 2009 US

Citation
Shiyu Chen, Kunyuan Xu, and Gang Wang, "Monte Carlo Investigation of Size-Dependent Impact Ionization Properties in InP Under Submicron Scale," J. Lightwave Technol. 27, 1347-1354 (2009)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-27-10-1347


Sort:  Year  |  Journal  |  Reset

References

  1. G. M. Dunn, G. J. Rees, J. P. R. David, "Monte Carlo simulation of impact ionization and current multiplication in short GaAs pin diodes," Semicond. Sci. Techonol. 12, 692 (1997).
  2. A. Reklatis, L. Reggiani, "Monte Carlo calculation of electron initiated impact ionization in bulk Zinc-Blende and Wurtzite GaN," J. Appl. Phys. 95, 7925 (2004).
  3. S. Koyama, T. Furuyama, S. Mimura, H. Iizuka, "Non-thermal carrier generation in MOS structures," Jpn. J. Appl. Phys. 19, 85 (1980).
  4. G. S. Kinsey, C. C. Hansing, A. L. Holmes, B. G. Streetman, Jr.J. C. Campbell, A. G. Dentai, "Waveguide In0.53Ga0.47As-In0.52Al0.48As avalanche photodiode," IEEE Photon. Technol. Lett. 12, 416 (2000).
  5. G. S. Kinsey, J. C. Campbell, A. G. Dentai, "Waveguide avalanche photodiode operating at 1.55 $\mu\hbox{m}$ with a gain-bandwidth product of 320 GHz," IEEE Photon. Technol. Lett. 13, 842 (2001).
  6. C. Lenox, H. Nie, P. Yuan, G. Kinsey, A. L. Holmes, B. G. Streetman, Jr.J. C. Campbell, "Resonant-cavity InGaAs-InAlAs avalanche photodiodes with gain-bandwidth product of 290 GHz," IEEE Photon. Technol. Lett. 11, 1162 (1999).
  7. P. A. Wolf, "Theory of electron multiplication in silicon and germanium," Phys. Rev. 95, 1415 (1954).
  8. G. A. Baraff, "Distribution functions and ionization rates for hot electrons in semiconductors," Phys. Rev. 128, 2507 (1962).
  9. W. P. Dumke, "Theory of avalanche breakdown in InSb and InAs," Phys. Rev. 167, 783 (1968).
  10. M. M. Hayat, B. E. A. Saleh, M. C. Teich, "Effect of dead space on gain and noise of double-carrier-multiplication avalanche photodiodes," IEEE Trans. Electron Devices 39, 546 (1992).
  11. R. J. McIntyre, "A new look at impact ionization—Part I: A theory of gain, nosie breakdown probability and frequency response," IEEE Trans. Electron Devices 46, 1623 (1999).
  12. F. Osaka, T. Mikawa, O. Wada, "Analysis of impact ionization phenomena in InP by Monte Carlo simulation," Jpn. J. Appl. Phys. 25, 394 (1986).
  13. D. S. Ong, K. F. Li, G. J. Rees, G. M. Dunn, J. P. R. David, P. N. Robson, "A simple model to determine multiplication and noise in avalanche photodiodes," J. Appl. Phys. 83, 3426 (1998).
  14. A. H. You, D. S. Ong, "Avalanche multiplication and noise characteristics of thin InP p-i-n diodes," Jpn. J. Appl. Phys. 43, 7399 (2004).
  15. D. S. Ong, K. F. Li, S. A. Plimmer, G. J. Rees, J. P. R. David, P. N. Robson, "Full band Monte Carlo modeling of impact ionization, avalanche multiplication, and noise in submicron GaAs p+-i-n+ diodes," J. Appl. Phys. 87, 7885 (2000).
  16. R. J. McIntyre, "Multiplication noise in uniform avalanche diodes," IEEE Trans. Electron Devices 13, 164 (1966).
  17. C. A. Armiento, S. H. Groves, "Impact ionization in (100)-, (110)-, and (111)- oriented InP avalanche photodiodes," Appl. Phys. Lett. 43, 198 (1983).
  18. K. F. Li, S. A. Plimmer, J. P. R. David, G. J. Rees, P. N. Robson, C. C. Button, J. C. Clark, "Low avalanche noise characteristics in thin InP p+-i-n + diodes with electron initiated multiplication," IEEE Photon. Technol. Lett. 11, 364 (1999).
  19. P. Yuan, C. C. Hansing, K. A. Anselm, C. V. Lenox, H. Nie, A. L. Holmes, B. G. Streetman, J. C. Campbell, "Impact ionization characteristics of III–V semiconductors for a wide range of multiplication region thickness," IEEE J. Quantum Electron. 36, 198 (2000).
  20. L. V. Keldysh, "Concerning the theory of impact ionization in a semiconductor," Sov. Phys. 21, 1135 (1965).
  21. A. H. You, D. S. Ong, "Monte Carlo modeling of high field carrier transport in bulk InP," ICSE 2000 Proc. (2000).
  22. C. W. Kao, C. R. Crowell, "Impact ionization by electrons and hole in InP," Solid State Electron. 23, 881 (1980).
  23. A. Spinelli, A. L. Lacaita, "Mean gain of avalanche photodiodes in a dead space model," IEEE Trans. Electron Devices 43, 23 (1996).
  24. R. J. McIntyre, "The distribution of gains in uniformly multiplying avalanche photodiodes: Theory," IEEE Trans. Electron Devices 19, 703 (1972).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited