Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 27,
  • Issue 11,
  • pp. 1448-1453
  • (2009)

High-Chip-Count UWB Biphase Coding for Multiuser UWB-Over-Fiber System

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, we propose and demonstrate a novel technique to optically generate high-chip-count, phase-coded direct-sequence (DS) ultrawideband (UWB) signals for multiple-access UWB communications. In the proposed system, a lightwave from a laser source is phase-modulated by a Gaussian pulse train. The phase-modulated lightwave is then sent to a polarization modulator, to modulate the polarization state of the lightwave by a code pattern. The polarization-coded optical signal is then converted into a biphase-coded DS-UWB signal by a polarization-dependent frequency discriminator. The key device in the proposed system is the frequency discriminator, which is implemented using a length of polarization maintaining fiber (PMF) and a polarizer. A 127-chip, biphase-coding DS-UWB that has a data rate of 26.46 Mb/s and a chip rate of 3.36 Gb/s is experimentally generated. A multiuser UWB-over-fiber system is then proposed and a two-user system is demonstrated, in which the encoding is performed experimentally and the decoding is performed by numerically calculating the correlation between the coded UWB signal and the signature sequence. The signal of each user is well recognized. An effective two-user UWB-over-fiber system based on the DS-UWB technology is thus demonstrated.

© 2009 IEEE

PDF Article
More Like This
Approach to all-optical bipolar direct-sequence ultrawideband coding

Qing Wang and Jianping Yao
Opt. Lett. 33(9) 1017-1019 (2008)

All-optical binary phase-coded UWB signal generation for multi-user UWB communications

Jianji Dong, Yuan Yu, Yin Zhang, Xiang Li, Dexiu Huang, and Xinliang Zhang
Opt. Express 19(11) 10587-10594 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.