OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 27, Iss. 12 — Jun. 15, 2009
  • pp: 2111–2116

Ytterbium-Doping Related Stresses in Preforms for High-Power Fiber Lasers

Florian Just, Hans-Rainer Müller, Sonja Unger, Johannes Kirchhof, Volker Reichel, and Hartmut Bartelt

Journal of Lightwave Technology, Vol. 27, Issue 12, pp. 2111-2116 (2009)

View Full Text Article

Acrobat PDF (574 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Frozen-in mechanical stresses can significantly influence the optical and mechanical properties of optical fibers, especially in laser fibers for high-power operation. In the following, we will report on the polarimetric measurement of stresses induced by the spatially varying doping composition in fiber preforms. We investigated the effect of rare-earth laser ions and found that the dopant ytterbium generates higher stresses than other common dopants in lightwave technology such as phosphorus or aluminum. The stress-induced index change relevant for the guiding properties is derived from the stress data. Especially in large-mode-area laser fibers with low numerical apertures, such stresses can significantly modify the index profile and thereby influence the propagation behavior.

© 2009 IEEE

Florian Just, Hans-Rainer Müller, Sonja Unger, Johannes Kirchhof, Volker Reichel, and Hartmut Bartelt, "Ytterbium-Doping Related Stresses in Preforms for High-Power Fiber Lasers," J. Lightwave Technol. 27, 2111-2116 (2009)

Sort:  Year  |  Journal  |  Reset


  1. G. W. Scherer, "Stress-induced index profile distortion in optical waveguides," Appl. Opt. 19, 2000-2006 (1980).
  2. F. Hanawa, Y. Hibino, M. Horiguchi, "Drawing condition dependence of pure-silica-core single-mode fibers," Electron. Commun. Jpn. 72, (1989).
  3. G. W. Scherer, "Thermal stresses in a cylinder: Application to optical waveguide blanks," J. Non-Cryst. Solids 34, 223-238 (1979).
  4. H. G. Limberger, C. Ban, R. P. Salathé, S. A. Slattery, D. N. Nikogosyan, "Absence of UV-induced stress in Bragg gratings recorded by high-intensity 264 nm laser pulses in a hydrogenated standard telecom fiber," Opt. Exp. 15, 5610-5615 (2007).
  5. A. D. Yablon, "Optical and mechanical effects of frozen-in stresses and strains in optical fibers," IEEE J. Sel. Top. Quantum Electron. 10, 300-311 (2004).
  6. J. J. Koponen, M. J. Söderlund, H. J. Hoffman, S. K. T. Tammela, "Measuring photodarkening from single-mode ytterbium doped silica fibers," Opt. Exp. 14, 11539 (2006).
  7. East GranbyNufern (Nufern, 2008) http://www.nufern.com/fiber_detail.php/71.
  8. T. Schreiber, H. Schultz, F. Röser, O. Schmidt, J. Limpert, R. Iliew, A. Petersson, S. Jacobsen, K. P. Hansen, J. Broeng, A. Tünnermann, "Design and high power operation of a stress-induced single-polarization single transverse mode LMA Yb-doped photonic crystal fiber," Proc. SPIE 6102, 61020C.1-61020C.9 (2006).
  9. O. Schmidt, J. Rothhardt, T. Eidam, F. Röser, J. Limpert, A. Tünnermann, K. P. Hansen, C. Jacobsen, J. Broeng, "Single-polarization ultra-large-mode-area Yb-doped photonic crystal fiber," Opt. Exp. 16, 3918-3923 (2008).
  10. D. W. Brown, H. J. Hoffman, "Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers," IEEE J. Quantum Electron. 37, 207-217 (2001).
  11. Y. Huo, P. K. Cheo, "Thermomechanical properties of high-power and high-energy Yb-doped silica fiber lasers," IEEE Photon. Technol. Lett. 16, 759-761 (2004).
  12. P. K. Bachmann, W. Hermann, H. Wehr, D. U. Wiechert, "Stress in optical waveguides. 1: Preforms," Appl. Opt. 25, 1093-1098 (1986).
  13. J. Kirchhof, S. Unger, A. Schwuchow, "Properties of Yb-doped materials for solid and microstructured high power fiber laser," Proc. ICMAT 2007, Symp. on Microstructured and Nanostructured Materials (2007) pp. 142.
  14. P. L. Chu, T. Whitbread, "Measurement of stresses in optical fiber and preform," Appl. Opt. 21, 4241-4245 (1982).
  15. Y. Park, K. Oh, U. C. Paek, D. Y. Kim, C. R. Kurkjian, "Residual stresses in a doubly clad fiber with depressed inner cladding (DIC)," J. Lightw. Technol. 17, 1823-1843 (1999).
  16. N. Shibata, K. Jinguji, M. Kawachi, T. Edahiro, "Nondestructive structure measurement of optical fiber preforms with photoelastic effect," Jpn. J. Appl. Phys. 18, 1267-1273 (1979).
  17. Y. Park, U. Paek, S. Han, B. Kim, C. Kim, D. Kim, "Inelastic frozen-in stresses in optical fibers," Opt. Commun. 242, 431-436 (2004).
  18. S. P. Timoshenko, J. N. Goodier, Theorie of Elasticity (McGraw-Hill, 1970).
  19. I. P. Kaminow, V. Ramaswamy, "Single-polarization optical fibers: Slab model," Appl. Phys. Lett. 34, 268-270 (1979).
  20. N. P. Bansal, R. H. Doremus, Handbook of Glass Properties (Academic Press, 1986).
  21. D. J. DiGiovanni, J. B. MacChesney, T. Y. Kometani, "Structure and properties of silca containing aluminium and phosphorus near the $\hbox{AlPO}_{4}$ join," J. Non-Cryst. Sol. 13, 58-64 (1989).
  22. S. Unger, A. Schwuchow, J. Dellith, J. Kirchhof, "Codoped materials for high power fiber lasers – Diffusion behaviour and optical properties," Proc. SPIE 6469, 646913 (2007).
  23. G. W. Scherer, "Thermal stresses in optical fibers: Fluid core assumption," J. Non-Cryst. Sol. 51, 323-332 (1982).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited