OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 27, Iss. 15 — Aug. 1, 2009
  • pp: 2964–2969

Optical Reflectivity of Asymmetric Dielectric–Metal–Dielectric Planar Structures

Stephen P. Frisbie, Ananth Krishnan, Xiaoyan Xu, Luis Grave de Peralta, Sergey A. Nikishin, Mark W. Holtz, and Ayrton A. Bernussi

Journal of Lightwave Technology, Vol. 27, Issue 15, pp. 2964-2969 (2009)

View Full Text Article

Acrobat PDF (410 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


We report simulations and experimental results on the incidence-angle dependence of the optical reflectivity of asymmetric dielectric–metal–dielectric planar structures. Transfer-matrix method and 2-D finite-element analysis revealed the presence of multiple resonances that were attributed to the surface plasmon (SP) polariton mode at the metal–dielectric interfaces and guided-wave polariton modes within the asymmetric dielectric–metal–dielectric waveguide. The number of guided-wave polariton resonances scale with the thickness of the dielectric guiding layer while the SP resonance remained essentially unaltered. These findings were validated through reflectivity measurements on sapphire–metal–polymer structures.

© 2009 IEEE

Stephen P. Frisbie, Ananth Krishnan, Xiaoyan Xu, Luis Grave de Peralta, Sergey A. Nikishin, Mark W. Holtz, and Ayrton A. Bernussi, "Optical Reflectivity of Asymmetric Dielectric–Metal–Dielectric Planar Structures," J. Lightwave Technol. 27, 2964-2969 (2009)

Sort:  Year  |  Journal  |  Reset


  1. R. Zia, M. Selker, P. Catrysse, M. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Amer. A 21, 2442-2446 (2004).
  2. S. Maier, "Plasmonics—Towards subwavelength optical devices," Curr. Nanosci. 1, -22 (2005).
  3. T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Hook, D. Sytherland, M. Kall, "Plasmonic sensing characteristics of single nanometric holes," Nanoletters 5, 2335-2339 (2005).
  4. J. Homola, H. Vaisocherová, J. Dostálek, M. Piliarik, "Multi-analyte surface plasmon resonance biosensing," Methods 37, 26-36 (2005).
  5. K. Choi, H. Kim, Y. Lim, S. Kim, B. Lee, "Analytic design and visualization of multiple surface plasmon resonance excitation using angular spectrum decomposition for a Gaussian input beam," Opt. Exp. 13, 8866-8874 (2006).
  6. T. Zacher, E. Wischerhoff, "Real-time two-wavelength surface plasmon resonance a tool for the vertical resolution of binding processes in biosensing hydrogels," Langmuir 18, 1748-1759 (2002).
  7. J. J. Chyou, C. S. Chu, Z. H. Shih, C. Y. Lin, S. J. Chen, C. F. Shu, "Fabrication and metrology of an electro-optic polymer light modulator based on waveguide-coupled surface plasmon resonance," Opt. Eng. 44, 1-7 (2005).
  8. E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539-554 (1969).
  9. Y. Yamamoto, T. Kamiya, H. Yanai, "Characteristics of optical guided modes in multilayer metal–clad planar optical guide with low-index dielectric buffer layer," IEEE J. Quantum Electron. 11, 729-736 (1975).
  10. M. S. Tomas, Z. Lenac, "Coupled surface polariton with guided wave polariton modes in asymmetric metal clad dielectric waveguides," Opt. Commun. 55, 267-270 (1985).
  11. J. J. Burke, G. I. Stegeman, T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B, Condens. Matter 33, 5186-5201 (1986).
  12. F. Y. Kou, T. Tamir, "Range extension of surface plasmons by dielectric layers," Opt. Lett. 12, 367-369 (1987).
  13. F. Yang, Z. Cao, L. Ruan, J. Fang, "Long-range surface modes of metal–clad four-layer waveguides," Appl. Opt. 25, 3903-3908 (1986).
  14. E. Anemogiannis, E. Glytsis, T. Gaylord, "Determination of guided and leaky modes in lossless and lossy planar multilayer optical waveguides: Reflection pole method and wavevector density method," J. Lightw. Technol. 17, 929-941 (1999).
  15. J. Guo, R. Adato, "Extended long range plasmon waves in finite thickness metal film and layered dielectric materials," Opt. Exp. 14, 12409-12418 (2006).
  16. J. Guo, R. Adato, "Control of 2-D plasmon-polariton mode with dielectric nanolayers," Opt. Exp. 16, 1232-1237 (2008).
  17. H. Li, Z. Cao, H. Lu, Q. Shen, "Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide," Appl. Phys. Lett. 83, 2757-2759 (2003).
  18. A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408, 131-314 (2005).
  19. M. P. Nezhad, K. Tetz, Y. Fainman, "Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides," Opt. Exp. 12, 4072-4079 (2004).
  20. J. Chilwell, I. Hodgkinson, "Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides," J. Opt. Soc. Amer. A 1, 742-753 (1984).
  21. O. S. Heavens, Optical Properties of Thin Solid Films (Dover, 1955).
  22. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  23. V. V. Vlasov, A. Rydth, J. Pearson, U. Welp, "Spectroscopy of surface plasmons in metal films with nanostructures," Appl. Phys. Lett. 88, 173112:1-173112:3 (2006).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited