OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 27, Iss. 15 — Aug. 1, 2009
  • pp: 2983–2988

Multistage Modified Fiber Drawing Process and Related Diameter Measuring System

Shih-Min Chuo, Meng-Hsun Wan, Lon A. Wang, and Jau-Sheng Wang

Journal of Lightwave Technology, Vol. 27, Issue 15, pp. 2983-2988 (2009)


View Full Text Article

Acrobat PDF (1050 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Recent progress on the drawing of micro and nanowires shows the length could only reach several millimeters because of the lack of material feeding mechanism. We report here a multistage modified fiber drawing process which allows a fiber preform to be drawn several times in the heating zone so that the desired diameter of microns and nanometers can be achieved more than 1 m long. Current results show that by this approach the micro/nano optical wires (MNOWs) could be drawn with the length up to 165 cm and the diameter down to 1.9 $\mu$m. A real-time diameter measuring system is also developed to monitor the diameter in situ and hence to optimize our fabrication process.

© 2009 IEEE

Citation
Shih-Min Chuo, Meng-Hsun Wan, Lon A. Wang, and Jau-Sheng Wang, "Multistage Modified Fiber Drawing Process and Related Diameter Measuring System," J. Lightwave Technol. 27, 2983-2988 (2009)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-27-15-2983


Sort:  Year  |  Journal  |  Reset

References

  1. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
  2. L. Tong, J. Lou, Z. Ye, G. T. Svacha, E. Mazur, "Self-modulated taper drawing of silica nanowires," Nanotechnology 16, 1445-1448 (2005).
  3. M. Sumetsky, Y. Dulashko, A. Hale, "Fabrication and study of bent and coiled free silica nanowires self-coupling microloop optical interferometer," Opt. Exp. 12, 3521-3531 (2004).
  4. G. Brambilla, V. Finazzi, D. J. Richardson, "Ultra-low-loss optical fiber nanotapers," Opt. Exp. 12, 2258-2263 (2004).
  5. G. Brambilla, F. Xu, X. Feng, "Fabrication of optical fibre nanowires and their optical and mechanical characterization," Electron. Lett. 42, 517-519 (2006).
  6. Y. K. Lizé, E. C. Mägi, V. G. Ta'eed, J. A. Bolger, P. Steinvurzel, B. J. Eggleton, "Microstructured optical fiber photonic wires with subwavelength core diameter," Opt. Exp. 12, 3209-3217 (2004).
  7. M. Sumetsky, "Basic elements for microfiber photonics micro nanofibers and microfiber coil resonators," J. Lightwave Technol. 26, 21-27 (2008).
  8. X. Jiang, Q. Yang, G. Vienne, Y. Li, L. Tong, J. Zhang, L. Hu, "Demonstration of microfiber knot laser," Appl. Phys. Lett. 89, 143513 (2006).
  9. X. Jiang, Y. Chen, G. Vienne, L. Tong, "All-fiber add-drop filters based on microfiber knot resonators," Opt. Lett. 32, 1710-1712 (2007).
  10. Y. Li, L. Tong, "Mach-Zehnder interferometers assembled with optical microfibers or nanofibers," Opt. Lett. 33, 303-305 (2008).
  11. F. Xu, G. Brambilla, "Demonstration of a refractometric sensor based on optical microfiber coil resonator," Appl. Phys. Lett. 92, 101126-1-101126-3.
  12. R. Chen, "Recent advances in polymer and silicon nanophotonics," Proc. Optical Fiber Communication Conf. Expo., OMJ4 (2008) pp. 1-25.
  13. B. Jalali, S. Fathpour, "Silicon photonics," J. Lightw. Technol. 24, 4600-4615 (2006).
  14. N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, M. J. Paniccia, "Development of CMOS-compatible integrated silicon photonics devices," IEEE J. Sel. Topics Quantum Electron. 12, 1688-1698 (2006).
  15. L. Eldada, L. W. Shacklette, "Advances in polymer integrated optics," IEEE J. Sel. Topics Quantum Electron. 6, 54-68 (2000).
  16. A. Fujii, T. Suzuki, K. Shimizu, K. Yatsuda, M. Igusa, S. Ohtsu, E. Akutsu, "A novel fabrication technology of a polymer optical waveguide and its application," Proc. SPIE 6775, 677506-1-677506-12 (2007).
  17. Y. Takeyoshi, T. Ishigure, "Multichannel parallel polymer waveguide with circular W-shaped index profile cores," IEEE Photon. Technol. Lett. 19, 1795-1797 (2007).
  18. L. Shi, X. Chen, H. Liu, Y. Chen, Z. Ye, W. Liao, Y. Xia, "Fabrication of submicron-diameter silica fibers using electric strip heater," Opt. Express 14, 5055-5060 (2006).
  19. N. Vukovic, N. G. R. Broderick, M. Petrovich, G. Brambilla, "Novel method for the fabrication of long optical fiber tapers," IEEE Photon. Technol. Lett. 20, 1264-1266 (2008).
  20. X. Xing, Y. Wang, B. Li, "Nanofibers drawing and nanodevices assembly in poly(trimethylene terephthalate)," Opt. Exp. 16, 10815-10822 (2008).
  21. S.-M. Cho, C.-S. Chang, L. A. Wang, "Fabrication of micro/nano optical wires with modified fiber-drawing process," Proc. Int. Conf. Commun., Circuits Syst. (2008) pp. 717-719.
  22. U. C. Paek, R. B. Runk, "Physical behavior of the neck-down region during furnace drawing of silica fibers," J. Appl. Phys. 49, 4417-4422 (1978).
  23. M. R. Myers, "A model for unsteady analysis of preform drawing," AIChE J. 35, 592-602 (1989).
  24. W. D. Kingery, "Surface tension of some liquid oxides and their temperature coefficients," J. Am. Ceram. Soc. 42, 6-10 (1959).
  25. R. Brückner, "Properties and structure of vitreous silica. I," J. Non-Cryst. Solid 5, 123-175 (1970).
  26. M. Kerker, The Scattering of Light, and Other Electromagnetic Radiation (Academic, 1969).
  27. D. H. Smithgall, L. S. Watkins, R. E. Frazee, Jr."High-speed noncontact fiber-diameter measurement using forward light scattering," Appl. Opt. 16, 2395-2402 (1977).
  28. F. Warken, H. Giessen, "Fast profile measurement of micrometer-sized tapered fibers with better than 50-nm accuracy," Opt. Lett. 29, 1727-1729 (2004).
  29. M. Sumetsky, Y. Dulashko, J. Fini, A. Hale, J. Nicholson, "Probing optical microfiber nonuniformities at nanoscale," Opt. Lett. 31, 2393-2395 (2006).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited