OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 27, Iss. 15 — Aug. 1, 2009
  • pp: 2989–2999

Mode Characteristics of the Strongly Anisotropic $a$-Axis Single-Crystal Fiber

Jiangbo Xin, Zhongxiang Zhou, Yanwei Du, and Dewei Gong

Journal of Lightwave Technology, Vol. 27, Issue 15, pp. 2989-2999 (2009)


View Full Text Article

Acrobat PDF (842 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

The mode theory of the strongly anisotropic $a$ axis step-index single-crystal fiber is studied in this paper. The electromagnetic field equations of the $a$ axis step-index single-crystal fiber are solved under the strongly anisotropic condition, and the transverse electric field components are obtained. The dispersion equations far from cutoff, near cutoff, and in the guided mode region are discussed, respectively. Numerical results of the $m$th-order elementary modes are presented for the strongly anisotropic $a$ axis step-index single-crystal fiber.

© 2009 IEEE

Citation
Jiangbo Xin, Zhongxiang Zhou, Yanwei Du, and Dewei Gong, "Mode Characteristics of the Strongly Anisotropic $a$-Axis Single-Crystal Fiber," J. Lightwave Technol. 27, 2989-2999 (2009)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-27-15-2989


Sort:  Year  |  Journal  |  Reset

References

  1. S. Yin, "Lithium niobate fibers and waveguides: Fabrications and applications," Proc. IEEE (1999) pp. 1962-1974.
  2. S. Nagaoka, "Compact latching-type single-mode-fiber switches fabricated by a fiber-micromachining technique and their practical applications," IEEE J. Sel. Topics Quantum Electron. 5, 36-45 (1999).
  3. Y. Sugiyama, I. Yokohama, K. Kubodera, S. Yagi, "Growth and photorefractive properties of $a$- and $c$ axis cerium-doped strontium barium niobate single crystal fibers," IEEE Photon. Technol. Lett. 3, 744-746 (1991).
  4. D. P. S. Saini, Y. Shimoji, R. S. F. Chang, N. Djeu, "Cladding of a crystal fiber by high-energy ion implantation," Opt. Lett. 16, 1074-1076 (1991).
  5. Y. Sugiyama, I. Hatakeyama, I. Yokohama, "Growth of $a$ axis strontium barium niobate single crystal fibers," J. Crystal Growth. 134, 255-265 (1993).
  6. G. Foulon, M. Ferriol, A. Brenier, M. T. Cohen-Adad, G. Boulon, "Laser heated pedestal growth and optical properties of ${\hbox {Yb}}^{3 +}$-doped LiNbO$_{3}$ single crystal fibers," Chem. Phys. Lett. 245, 555-560 (1995).
  7. R. Burlot, M. Ferriol, R. Moncorgé, G. Boulon, "Li$_{2}$O evaporation during the laser heated pedestal growth of LiTaO$_{3}$ single-crystal fibers," Eur. J. Solid State Inorg. Chem. 35, 1-8 (1998).
  8. W. X. Que, S. P. Lim, X. Yao, "Cladding and characteristics of the $a$ axis MgO:LiNbO$_{3}$ single crystal fibre," J. Mater. Sci. Lett. 16, 1398-1399 (1997).
  9. W. X. Que, X. Yao, Y. J. Huo, "A axis Nd:MgO:LiNbO$_{3}$ single crystal fibers with magnesium-ion indiffused cladding," Ferroelectrics 195, 269-272 (1997).
  10. W. X. Que, Y. Zhou, Y. L. Lam, Y. C. Chan, C. H. Kam, Y. J. Huo, X. Yao, "Second-harmonic generation using an $a$ axis Nd : MgO : LiNbO$_{3}$ single crystal fiber with Mg-ion indiffused cladding," Opt. Eng. 39, 2804-2809 (2000).
  11. W. L. Mammel, L. G. Cohen, "Numerical prediction of fiber transmission characteristics from arbitrary refractive-index profiles," Appl. Optics 21, 699-703 (1982).
  12. A. Tonning, "Circularly symmetric optical waveguide with strong anisotropy," IEEE Trans. Microwave Theory Tech. MTT-30, 790-794 (1982).
  13. A. W. Snyder, J. D. Love, R. A. Sammut, "Green's-function methods for perturbed optical fibers," J. Opt. Soc. Am. 72, 1131-1135 (1982).
  14. A. W. Snyder, F. Rühl, "Ultrahigh birefringent optical fibers," IEEE J. Quantum Electron. QE-20, 80-85 (1984).
  15. C.-L. Chen, "An analysis of high birefringence fibers," J. Lightw. Technol. LT-5, 53-60 (1987).
  16. J. D. Dai, C. K. Jen, "Analysis of cladded uniaxial single crystal fiber," J. Opt. Soc. Am. A 8, 2021-2025 (1991).
  17. R.-B. Wu, "Explicit birefringence analysis for anisotropic fiber," J. Lightw. Technol. 10, 6-11 (1992).
  18. M. Koshiba, K. Inoue, "Simple and efficient finite-element analysis of micro wave and optical waveguides," IEEE Trans. Microw. Theory Tech. 40, 371-377 (1992).
  19. A. D. Bresler, "Vector formulations for the field equations in anisotropic waveguides," IEEE Trans. Microw. Theory Tech. 7, 298 (1959).
  20. W. K. Burns, J. Warner, "Mode dispersion in uniaxial optical waveguides," J. Opt. Soc. Am. 64, 441-446 (1974).
  21. J. Xin, Y. Du, D. Gong, Z. Zhou, "Properties of strong anisotropic $a$ axis single-crystal fiber with an applied electric field," Appl. Opt. 47, 5087-5097 (2008).
  22. W. H. Yu, W. Y. Liu, Crystal Physics (University of Science and Technology of China Press, 1998) pp. 247.
  23. G. M. Davis, N. A. Lindop, "Fabrication and characterization of pyrophosphoric acid proton exchanged lithium tantalate waveguides," J. Appl. Phys. 77, 6121-6127 (1995).
  24. B. K. Kima, G. Y. Kang, J. K. Yoon, J. H. Ro, "The photorefractive effects of Fe and Fe $+$ Ce doped LiTaO$_{3}$ single crystal," J. Phys. Chem. Solids 61, 637-646 (2000).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited