OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 27, Iss. 15 — Aug. 1, 2009
  • pp: 3021–3033

Versatile Characterization of Specialty Fibers Using the Phase-Sensitive Optical Low-Coherence Reflectometry Technique

Renaud Gabet, Philippe Hamel, Yves Jaouën, Anne-Francoise Obaton, Vincent Lanticq, and Guy Debarge

Journal of Lightwave Technology, Vol. 27, Issue 15, pp. 3021-3033 (2009)


View Full Text Article

Acrobat PDF (1943 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Emergence of new fibers families induces considerable requirements in terms of characterization and metrology (group delay, chromatic dispersion, birefringence, bending losses, etc.). The optical low-coherence reflectometry (OLCR) technique is demonstrated as a versatile method for the characterization of most types of optical fiber. A synthesis of multiple analysis concerning different families of specialty fibers including rare-earth-doped fibers, few-mode fibers, and microstructured fibers will be presented. OLCR allows measuring precisely the group velocity dispersion value for both polarization modes and birefringence. It is also possible to measure small refractive-index variations in a pumped Erbium-doped fiber. Unique dispersive properties of higher order modes fiber offer novel solutions for dispersion compensation or nonlinear effects management. OLCR can allow each LP mode characterization without the requirement for mode converters. A new method, called “time-wavelength reflection mapping,” based on the OLCR interferogram processing is applied to the determination of chromatic dispersion of each guided LP mode whatever their group index. Finally, different characterization results concerning photonics crystal fibers with guiding based on the conventional total internal reflection principle (high-index guiding) or photonic bandgap effect (low-index guiding) will be presented.

© 2009 IEEE

Citation
Renaud Gabet, Philippe Hamel, Yves Jaouën, Anne-Francoise Obaton, Vincent Lanticq, and Guy Debarge, "Versatile Characterization of Specialty Fibers Using the Phase-Sensitive Optical Low-Coherence Reflectometry Technique," J. Lightwave Technol. 27, 3021-3033 (2009)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-27-15-3021


Sort:  Year  |  Journal  |  Reset

References

  1. S. E. Mechels, J. B. Schlager, D. L. Franzen, "Accurate measurements of the zero-dispersion wavelength in optical fibers," J. Res. Natl. Inst. Stand. Technol. 102, 333-347 (1997).
  2. E. Desurvire, Erbium Doped Fibre Amplifiers : Principles and Applications .
  3. B. J. Soller, D. K. Gifford, M. S. Wolfe, M. E. Froggatt, "High resolution optical frequency domain reflectometry for characterization of components and assemblies," Opt. Exp. 13, 666-674 (2005).
  4. P.-L. François, M. Monerie, C. Vassalo, Y. Durteste, F. R. Alard, "Three ways to implement interfacial techniques : Application to measurements of chromatic dispersion, birefringence and non-linear suscptibilities," IEEE J. Lightw. Technol. 7, 500-513 (1989).
  5. C. Dorrer, S. Ramachandran, "Self-referencing dispersion characterization of multimode structures using direct instantatenous frequency measurement," IEEE Photon. Technol. Lett. 16, 1700-1702 (2004).
  6. J. Y. Lee, D. Y. Kim, "Versatile chromatic dispersion measurement of a single mode fiber using spectral white light interferometry," Opt. Exp. 14, 11608-11615 (2006).
  7. T. Ahn, Y. Jung, K. Oh, D. Y. Kim, "Optical frequency-domain chromatic dispesion measurement method for higher-order modes in an optical fiber," Opt. Exp. 13, 10040-10048 (2005).
  8. T. Ahn, Y. Park, D. J. Moss, S. Ramachandran, J. Azaña, "Frequency-domain modal delay measurement for high-order mode fiber based on stretched pulse interference," Opt. Lett. 33, 19-21 (2008).
  9. D. Menashe, M. Tur, Y. Danziger, "Interferometric technique for measuring dispersion of high order modes in optical fibers," Electron. Lett. 37, 1439-1440 (2001).
  10. J. W. Nicholson, S. Ramachandran, S. Ghalmi, E. A. Monberg, F. V. DiMarcello, M. F. Yan, P. Wisk, J. W. Fleming, "Electrical spectrum measurements of dispersion in high order mode fibers," IEEE Photon. Technol. Lett. 15, 831-833 (2003).
  11. K. Takada, A. Himeno, K. Yukimatsu, "High sensitivity and submillimeter resolution optical time-domain reflectometry based on low-coherence interference," J. Lightw. Technol. 10, 1998-2005 (1992).
  12. H. H. Gilgen, R. P. Novak, R. P. Salathé, W. Hodel, P. Beaud, "Submillimeter optical reflectometer," J. Lightw. Technol. 7, 1225-1233 (1989).
  13. U. Wiedman, P. Gallion, G.-H. Duan, "A genelarized approach of optical low-coherence reflectometry including spectral filtering effects," J. Lightw. Technol. 16, 1343-1347 (1998).
  14. X. Chapeleau, D. Leduc, C. Lupi, R. Le Ny, M. Douay, P. Niay, C. Boisrobert, "Experimental synthesis of fiber Bragg gratings using optical low coherence reflectometry," Appl. Phys. Lett. 82, 4227-4229 (2003).
  15. C. Palavicini, G. Campuzano, B. Thedrez, Y. Jaouën, P. Gallion, "Analysis of optical-injected distributed feedback lasers using complex optical low-coherence reflectometry," IEEE Photon. Technol. Lett. 15, 1683-1685 (2003).
  16. Y. Gottesman, E. V. K. Rao, B. Dagens, "A novel design proposal to minimize reflections in deep-ridge multimode interference couplers," IEEE Photon. Technol. Lett. 12, 1662-1664 (2000).
  17. S. D. Dyer, K. B. Rochford, "Low-coherence interferometric measurements of fiber Bragg grating dispersion," Electron. Lett. 35, 1485-1486 (1999).
  18. G. T. Reed, "Methods of measurement of passive integrated optical waveguides," Coloqu. Meas. Opt. Devices (1992) pp. 2/1-2/7.
  19. L. Thevenaz, J.-P. Pellaux, N. Gisin, J.-P. Von Der Weid, "Birefringence measurements in fibers without polarizer," J. Lightw. Technol. (1989).
  20. S. C. Fleming, T. J. Whitley, "Measurement and analysis of pump-dependant refractive index and dispersion effects in erbium-doped fiber amplifiers," IEEE J. Quantum Electron. 32, 1113-1121 (1996).
  21. K. Takada, T. Kitagawa, K. Hattori, M. Yamada, M. Horiguchi, R. K. Hickernell, "Direct dispersion measurement of highly-erbium-doped optical amplifiers using a low coherence reflectometer coupled with dispersive Fourier spectroscopy," Electron. Lett. 28, 1889-1891 (1992).
  22. J.-M. Martin, J.-C. Mollier, "Characterization and modeling of dynamic phase response of EDFAs," CLEO'04 (2004).
  23. S. Ramachandran, "Dispersion tailored few-mode fibers : A versatile platform for in-fiber photonic device," J. Lightw. Technol. 23, 3426-3443 (2005).
  24. S. Ramachandran, S. Ghalmi, J. W. Nicholson, M. F. Yan, P. Wisk, E. Monberg, F. V. Dimarcello, Opt. Lett. 31, 2532-2534 (2006).
  25. Y. Jaouën, C. Palavicini, A.-F. Obaton, C. Moreau, P. Sillard, "Direct chromatic dispersion determination of HOM fibers using OLCR technique," CLEO'05 Anheim (2005) CthB4.
  26. J. Y. Lee, D. Y. Kim, "Determination of the differential mode delay of a multimode fiber using Fourier-domain intermodal interference analysis," Opt. Exp. 14, 9016-9021 (2006).
  27. Y. Gottesman, A. Parini, B.-E. Benkelfat, E. V. K. Rao, "Benefits of concurrent spatial and spectral analysis of photonique components," IPRM'08 Conf. Versailles (2008).
  28. D. Engin, "Complex optical low coherence reflectometry (OLCR) with tunable source," IEEE Photon. Technol. Lett. 16, 1346-1348 (2004).
  29. D. Engin, E. Eyal, R. Salvadore, M. Tur, X. Tong, "Impulse response measurements using optical low coherence reflectometry with tunable source," Proc. OFC 2006 pp. 3-4.
  30. M. Volanthen, H. Geiger, J. P. Dakin, "Distributed gratings sensors using low-coherence reflectometry," J. Lightw. Technol. 15, 2076-2082 (1997).
  31. P. S. J. Russell, "Photonics-crystal fibers," J. Lightw. Technol. 24, 4729-4749 (2006).
  32. P. Hamel, Y. Jaouen, R. Gabet, "Optical low-coherence reflectometry for complete chromatic dispersion characterization of few-mode fiber," Opt. Lett. 32, 1029-1031 (2007).
  33. G. Bouwmans, F. Luan, J. C. Knight, P. S. Russel, L. Farr, B. J. Mangan, H. Sabert, "Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength," Opt. Exp. 11, 1613-1620 (2003).
  34. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. Mason, A. Tomlison, T. A. Birks, J. C. Knight, P. S. J. Russel, "Ultimate low loss of hollow-core photonic bandgap fibers," Opt. Exp. 13, 236-244 (2005).
  35. J. West, C. Smith, N. Borelli, D. Allan, K. Koch, "Surface modes in air-core photonic band-gap fibers due to interface roughness scattering," Opt. Exp. 12, 1485-1496 (2004).
  36. K. Saitoh, N. Mortensen, M. Koshiba, "Air-core photonic band-gap fibers: The impact of surface modes," Opt. Exp. 12, 394-400 (2004).
  37. S. Combrié, N. V. Q. Tran, E. Weidner, A. De Rossi, S. Cassette, P. Hamel, Y. Jaouen, R. Gabet, A. Talneau, "Investigation of group delay, loss and disorder in a photonic crystal waveguide using low-coherence reflectometry," Appl. Phys. Lett. 90, (2007).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited