OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 27, Iss. 15 — Aug. 1, 2009
  • pp: 3057–3061

Enhancement of CW THz Wave Power Under Noncollinear Phase-Matching Conditions in Difference Frequency Generation

Srinivasa Ragam, Tadao Tanabe, Kyosuke Saito, Yutaka Oyama, and Jun-ichi Nishizawa

Journal of Lightwave Technology, Vol. 27, Issue 15, pp. 3057-3061 (2009)

View Full Text Article

Acrobat PDF (232 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


We investigated methods for improvement of continuous-wave (CW) terahertz (THz) output power by laser diode (LD) pumping in noncollinear phase-matched difference frequency generation (DFG). The effects of interaction length and beam spot size of input lasers (near-IR) in GaP crystals were studied. The THz wave power dependence on various sizes of GaP crystals was investigated and it was observed that an output power of 4 nW was obtained with a 20 mm long GaP crystal at 1.5 THz. Also, the THz wave absorption coefficient was dominant for longer GaP crystals at high frequencies (above 2.5 THz). The THz wave power dependence on beam spot size (1.2 mm–300 $\mu{\rm m}$) of near-IR lasers at 1.62 THz was studied, and an improvement of THz wave power being seen with a 500 $\mu{\rm m}$ beam spot size, while the beam divergence effect was dominant for beam spot sizes below 500 $\mu{\rm m}$.

© 2009 IEEE

Srinivasa Ragam, Tadao Tanabe, Kyosuke Saito, Yutaka Oyama, and Jun-ichi Nishizawa, "Enhancement of CW THz Wave Power Under Noncollinear Phase-Matching Conditions in Difference Frequency Generation," J. Lightwave Technol. 27, 3057-3061 (2009)

Sort:  Year  |  Journal  |  Reset


  1. J. Nishizawa, "History and characteristics of semiconductor laser," Denshi Kagaku 14, 17-31 (1963).
  2. J. Nishizawa, "Esaki diode and long-wavelength laser," Denshi Gijutu 7, 101-106 (1965).
  3. J. Nishizawa, Semiconductor Maser Japan Patent 273217 (1957).
  4. J. Nishizawa, K. Suto, "Semiconductor Raman laser," J. Appl. Phys. 51, 2429-2431 (1980).
  5. K. Suto, J. Nishizawa, "Low threshold semiconductor Raman laser," IEEE J. Quantum Electron. QE-19, 1251-1254 (1983).
  6. T. Tanabe, K. Suto, J. Nishizawa, K. Saito, T. Kimura, "Tunable terahertz wave generation in the 3- to 7-THz region from GaP," Appl. Phys. Lett. 83, 237-239 (2003).
  7. H. Auston, K. P. Cheung, P. R. Smith, "Picosecond photoconducting Hertzian dipoles," Appl. Phys. Lett. 45, 284-286 (1984).
  8. C. Fattinger, D. Grischkowsky, "Point source terahertz optics," Appl. Phys. Lett. 53, 1480-1482 (1988).
  9. B. B. Hu, J. T. Darrow, X.-C. Zhang, D. H. Auston, P. R. Smith, "Optically steerable photoconducting antennas," Appl. Phys. Lett. 56, (1990).
  10. L. Xu, X.-C. Zhang, D. H. Auston, "Terahertz beam generation by femtosecond optical pulses in electrooptic materials," Appl. Phys. Lett. 61, 1784-1786 (1992).
  11. N. Karpowicz, H. Zhong, X. Jingzhou, K.-I. Lin, J.-S. Hwang, X.-C. Zhang, "Comparison between pulsed terahertz time-domain imaging and continuous terahertz imaging," Semicond. Sci. Technol. 20, S293-S299 (2005).
  12. K. J. Siebert, H. Quast, R. Leonhardt, T. Loffler, M. Thomson, T. Bauer, H. G. Roskos, S. Czasch, "Continuous-wave all optoelectronic terahertz imaging," Appl. Phys. Lett. 8, 3003-3005 (2002).
  13. R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. Ritchie, R. C. Iotti, F. Rossi, "THz semiconductor heterostructure laser," Nature 417, 156-159 (2002).
  14. J. S. Yu, S. Slivken, A. Evans, S. Darvish, J. Nguyen, M. Razeghi, "High power $\lambda \sim 9.5~\mu{\rm m}$ quantum-cascade lasers operating above room temperature in continuous-wave mode," Appl. Phys. Lett. 88, 091113-091113 (2006).
  15. K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. Di Natale, T. M. Lyszczarz, "Terahertz photomixing with diode lasers in low-temperature grown GaAs," Appl. Phys. Lett. 67, (1995).
  16. T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, K. Donhuijsen, "Continuous wave THz imaging," Electron. Lett. 37, 1461-1461 (2001).
  17. Y. Sasaki, H. Yokoyama, H. Ito, "Surface-emitted continuous-wave terahertz radiation using periodically poled lithium niobate," Electron. Lett. 41, 712-713 (2005).
  18. C. Baker, I. Gregory, M. Evans, W. Tribe, E. Linfield, M. Missous, "All optoelectronic terahertz system using low-temperature-grown InGaAs photo mixers," Opt. Express 13, 9639-9639 (2005).
  19. M. R. Stone, M. Naftaly, R. E. Miles, I. C. Mayorga, A. Malcoci, M. Mikulics, "Generation of continuous-wave terahertz radiation using two-mode titanium sapphire laser containing an intra-cavity Fabry-Perot etalon," J. Appl. Phys. 97, 103108.1-4 (2005).
  20. J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, Y. Oyama, "Continuous-wave frequency-tunable terahertz-wave generation from GaP," IEEE Photon. Technol. Lett. 18, 2008-2010 (2006).
  21. T. Tanabe, K. Suto, J. Nishizawa, K. Saito, T. Kimura, "Frequency tunable THz wave generation via excitation of phonon-polaritons in GaP," J. Phys. D: Appl. Phys. 36, 953-957 (2003).
  22. T. Tanabe, K. Suto, J. Nishizawa, T. Kimura, K. Saito, "Frequency tunable high-power terahertz wave generation from GaP," J. Appl. Phys. 93, 4610-4615 (2003).
  23. Y. R. Shen, Nonlinear Infrared Generation (Springer, 1977).
  24. T. Tanabe, S. Ragam, T. Sasaki, Y. Oyama, K. Suto, J. Nishizawa, "Two-directional CW THz wave generation system by pumping with a single fiber amplifier of near IR lasers," IEEE Photon. Technol. Lett 21, 260-260 (2009).
  25. K. saito, T. Tanabe, Y. Oyama, K. Suto, T. Kimura, J. Nishizawa, "Terahertz wave absorption in GaP crystals with different carrier densities," J. Phys. Chem. Solids 69, 597-600 (2008).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited