OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 27, Iss. 15 — Aug. 1, 2009
  • pp: 3092–3106

Optical Signal Processor Using Electro-Optic Polymer Waveguides

Byoung-Joon Seo, Seongku Kim, Bart Bortnik, Harold Fetterman, Dan Jin, and Raluca Dinu

Journal of Lightwave Technology, Vol. 27, Issue 15, pp. 3092-3106 (2009)

View Full Text Article

Acrobat PDF (1721 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


We have investigated an optical signal processor using electro-optic polymer waveguides operating at a wavelength of 1.55 $\mu$m. Due to recent developments, many useful optical devices have become available such as optical filters, modulators, switches, and multiplexers. It will be useful to have a single optical device, which is reconfigurable to implement all of these functions. We call such a device an “optical signal processor,” which will play a similar role to digital signal processors in electrical circuits. We realize such an optical device in a planar lightwave circuit. Since the planar lightwave circuits are based on the multiple interference of coherent light and can be integrated with significant complexity, they have been implemented for various purposes of optical processing such as optical filters. However, their guiding waveguides are mostly passive, and the only viable mechanism to reconfigure their functions is thermal effects, which is slow and cannot be used for high-speed applications such as optical modulators or optical packet switches. On the other hand, electro-optic polymer has a very high electro-optic coefficient and a good velocity match between electrical and optical signals, thus, permitting the creation of high-speed optical devices with high efficiency. Therefore, we have implemented a planar lightwave circuit using the electro-optic polymer waveguides. As a result, the structure is complex enough to generate arbitrary functions and fast enough to obtain high data rates. Using the optical signal processor, we investigate interesting applications including arbitrary waveform generators.

© 2009 IEEE

Byoung-Joon Seo, Seongku Kim, Bart Bortnik, Harold Fetterman, Dan Jin, and Raluca Dinu, "Optical Signal Processor Using Electro-Optic Polymer Waveguides," J. Lightwave Technol. 27, 3092-3106 (2009)

Sort:  Year  |  Journal  |  Reset


  1. C. K. Madsen, J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley-Interscience, 1999).
  2. C. K. Madsen, G. Lenz, "Optical all-pass filters for phase response design with applications for dispersion compensation," IEEE Photon. Technol. Lett. 10, 994-996 (1998).
  3. C. K. Madsen, "General IIR optical filter design for WDM applications using all-pass filters," IEEE J. Lightw. Technol. 18, 860-868 (2000).
  4. K. Jinguji, M. Kawachi, "Synthesis of coherent two-port lattice-form optical delay-line circuit," IEEE J. Lightw. Technol. 13, 73-82 (1995).
  5. K. Jinguji, "Synthesis of coherent two-port optical delay-line circuit with ring waveguides," IEEE J. Lightw. Technol. 14, 1882-1898 (1996).
  6. N. Takato, T. Kominato, A. Sugita, K. Jinguji, H. Toba, M. Kawachi, "Silica-based integrated optic Mach–Zehnder multi/demultiplexer family with channel spacing of 0.01–250 nm," IEEE J. Sel. Areas Commun. 8, 1120-1127 (1990).
  7. G. Lenz, B. J. Eggleton, C. K. Madsen, R. E. Slusher, "Optical delay lines based on optical filters," IEEE J. Quantum Electron. 37, 525-532 (2001).
  8. K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, H. J. Shaw, "Optical fiber delay-line signal processing," IEEE Trans. Microw. Theory Tech. MTT-33, 193-210 (1985).
  9. B. Moslehi, J. W. Goodman, "Novel amplified fiber-optic recirculating delay line processor," IEEE J. Lightw. Technol. 10, 1142-1147 (1992).
  10. J. Capmany, J. Cascbn, J. L. Martin, S. Sales, D. Pastor, J. Marti, "Synthesis of fiber delay line filters," IEEE J.Lightw. Technol. 13, 2003-2012 (1995).
  11. Y. P. Li, C. H. Henry, "Silica-based optical integrated circuits," IEE Proc. Optoelectron. 143, 263-280 (1996).
  12. K. Kato, Y. Tohmori, "PLC hybrid integration technology and its application to photonic components," IEEE J. Sel. Topics Quantum Electron. 6, 4-13 (2000).
  13. T. Miya, "Silica-based planar lightwave circuits: Passive and thermally active devices," IEEE J. Sel. Topics Quantum Electron. 6, 38-45 (2000).
  14. R. Adar, C. H. Henry, R. F. Kazarinov, R. C. Kistler, G. R. Weber, "Adiabatic 3-dB couplers, filters, and multiplexers made with silica waveguides on silicon," J. Lightw. Technol. 10, 46-50 (1992).
  15. C. Zhang, L. R. Dalton, M. C. Oh, H. Zhang, W. Steier, "Low ${\rm V}_{\pi}$ electrooptic modulators from CLD-1: Chromophore design and synthesis, material processing, and characterization," Chem. Mater. 13, 3043-3050 (2001).
  16. H. Zhang, M.-C. Oh, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, D. H. Chang, H. R. Fetterman, "Push-pull electro-optic polymer modulators with low half-wave voltage and low loss at both 1310 and 1550 nm," Appl. Phys. Lett. 78, 3136-3138 (2001).
  17. I. Y. Poberezhskiy, B. Bortnik, S.-K. Kim, H. R. Fetterman, "Electro-optic polymer frequency shifter activated by input optical pulses," Opt. Lett. 28, 1570-1572 (2003).
  18. D. H. Chang, H. Erlig, M. Oh, C. Zhang, W. H. Steier, L. R. Dalton, H. R. Fetterman, "Time stretching of 102-ghz millimeter waves using novel 1.55 mu m polymer electrooptic modulator," IEEE Photon. Technol. Lett. 12, 537-539 (2000).
  19. B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, H. R. Fetterman, "Electrooptic polymer ring resonator modulation up to 165 ghz," IEEE J. Sel. Topics Quantum Electron. 13, 104-110 (2007).
  20. J. Han, B.-J. Seo, S.-K. Kim, H. Zhang, H. R. Fetterman, "Single-chip integrated electro-optic polymer photonic RF phase shifter array," J. Lightw. Technol. 21, 3257-3261 (2003).
  21. K. Sasayama, M. Okuno, K. Habara, "Coherent optical transversal filter using silica-based waveguides for high-speed signal processing," J. Lightw. Technol. 9, 1225-1230 (1991).
  22. A. V. Oppenheim, R. W. Schafer, Discrete-Time Signal Processing (Prentice-Hall, 1989).
  23. C. J. Kaalund, G.-D. Peng, "Pole-zero diagram approach to the design of ring resonator-based filters for photonic applications," J. Lightw. Technol. 22, 1548-1559 (2004).
  24. C. C. Tengi, H. T. Man, "A simple reflection technique for measuring the electro-optic coefficient of poled polymers," Appl. Phys. Lett. 56, 1734-1736 (1990).
  25. P. Rabiei, W. H. Steier, C. Zhang, L. R. Dalton, "Polymer micro-ring filters and modulators," J. Lightw. Technol. 20, 1968-1975 (2002).
  26. S.-K. Kim, H. Zhang, D. H. Chang, C. Zhang, C. Wang, W. H. Steier, H. R. Fetterman, "Electrooptic polymer modulators with an inverted-rib waveguide structure," IEEE Photon. Technol. Lett. 15, 218-220 (2003).
  27. H. Tazawa, Y.-H. Kuo, I. Dunayevskiy, J. Luo, A. K.-Y. Jen, H. R. Fetterman, W. H. Steier, "Ring resonator-based electrooptic polymer traveling-wave modulator," J. Lightw. Technol. 24, 3514-3519 (2006).
  28. T. Yamamoto, M. Koshiba, "Numerical analysis of curvature loss in optical waveguides by the finite-element method," J. Lightw. Technol. 11, 1594-1583 (1993).
  29. N.-N. Feng, G.-R. Zhou, C. Xu, W.-P. Huang, "Computation of full-vector modes for bending waveguide using cylindrical perfectly matched layers," J. Lightw. Technol. 20, 1976-1980 (2002).
  30. M. Heiblum, J. Harris, "Analysis of curved optical waveguides by conformal transformation," IEEE J. Quantum Electron. QE-11, 75-83 (1975).
  31. A. Nesterov, U. Troppenz, "Plane-wave boundary method for analysis of bent optical waveguides," J. Lightw. Technol. 21, 1-4 (2003).
  32. J. M. Choi, "Ring fiber resonators based on fused-fiber grating add-drop filters: Application to resonator coupling," Opt. Lett. 27, 1598-1600 (2002).
  33. K. Geary, S.-K. Kim, B.-J. Seo, H. R. Fetterman, "Mach–Zehnder modulator arm length mismatch measurement technique," J. Lightw. Technol. 23, 1273-1277 (2005).
  34. M. R. Fetterman, H. R. Fetterman, "Optical device design with arbitrary output intensity as a function of input voltage," IEEE Photon. Technol. Lett. 17, 97-99 (2005).
  35. T. R. Halemane, S. K. Korotky, "Distortion characteristics of optical directional coupler modulators," IEEE Trans. Microw. Theory Tech. 38, 669-673 (1990).
  36. L. M. Johnson, H. V. Roussell, "Reduction of intermodulation distortion in interferometric optical modulators," Opt. Lett. 13, 928-930 (1998).
  37. D. J. M. Sabido, M. Tabara, T. K. Fong, C.-L. Lu, L. G. Kazovsky, "Improving the dynamic range of a coherent am analog optical link using a cascaded linearized modulator," IEEE Photon. Technol. Lett. 7, 813-815 (1995).
  38. J. L. Brooks, G. S. Maurer, R. A. Becker, "Implementation and evaluation of a dual parallel linearization system for am-scm video transmission," J. Lightw. Technol. 11, 34-41 (1993).
  39. R. B. Childs, V. A. O'Byrne, "Multichannel AM video transmission using a high-power Nd:YAG laser and linearized external modulator," IEEE J. Sel. Areas Commun. 8, 1369-1376 (1990).
  40. Y.-C. Hung, H. R. Fetterman, "Polymer-based directional coupler modulator with high linearity," IEEE Photon. Technol. Lett. 17, 2565-2567 (2005).
  41. X. Xie, J. Khurgin, J. Kang, F.-S. Chow, "Linearized Mach–Zehnder intensity modulator," IEEE Photon. Technol. Lett. 15, 531-533 (2003).
  42. J. Yang, F. Wang, X. Jiang, H. Qu, M. Wang, Y. Wang, "Inuence of loss on linearity of microring-assisted Mach–Zehnder modulator," Opt. Exp. 12, 4178-4188 (2004).
  43. P.-L. Liu, B. J. Li, Y. S. Trisno, "In search of a linear electrooptic amplitude modulator," IEEE Photon. Technol. Lett. 3, 144-146 (1991).
  44. D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, Y. Shi, "Demonstration of 110 ghz electro-optic polymer modulators," Appl. Phys. Lett. 70, 3335-3337 (1997).
  45. D. H. Chang, T. Azfar, S.-K. Kim, H. R. Fetterman, C. Zhang, W. H. Steier, "Vertical adiabatic transition between a silica planar waveguide and an electro-optic polymer fabricated with gray-scale lithography," Opt. Lett. 28, 869-871 (2003).
  46. K. Geary, S.-K. Kim, B.-J. Seo, Y.-C. Huang, W. Yuan, H. R. Fetterman, "Photobleached refractive index tapers in electrooptic polymer rib waveguides," IEEE Photon. Technol. Lett. 18, 64-66 (2006).
  47. W. Yuan, S. Kim, H. R. Fetterman, W. H. Steier, D. Jin, R. Dinu, "Hybrid integrated cascaded 2-bit electrooptic digital optical switches (doss)," IEEE Photon. Technol. Lett. 19, 519-521 (2007).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited