OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 27, Iss. 15 — Aug. 1, 2009
  • pp: 3092–3106

Optical Signal Processor Using Electro-Optic Polymer Waveguides

Byoung-Joon Seo, Seongku Kim, Bart Bortnik, Harold Fetterman, Dan Jin, and Raluca Dinu

Journal of Lightwave Technology, Vol. 27, Issue 15, pp. 3092-3106 (2009)


View Full Text Article

Acrobat PDF (1721 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We have investigated an optical signal processor using electro-optic polymer waveguides operating at a wavelength of 1.55 $\mu$m. Due to recent developments, many useful optical devices have become available such as optical filters, modulators, switches, and multiplexers. It will be useful to have a single optical device, which is reconfigurable to implement all of these functions. We call such a device an “optical signal processor,” which will play a similar role to digital signal processors in electrical circuits. We realize such an optical device in a planar lightwave circuit. Since the planar lightwave circuits are based on the multiple interference of coherent light and can be integrated with significant complexity, they have been implemented for various purposes of optical processing such as optical filters. However, their guiding waveguides are mostly passive, and the only viable mechanism to reconfigure their functions is thermal effects, which is slow and cannot be used for high-speed applications such as optical modulators or optical packet switches. On the other hand, electro-optic polymer has a very high electro-optic coefficient and a good velocity match between electrical and optical signals, thus, permitting the creation of high-speed optical devices with high efficiency. Therefore, we have implemented a planar lightwave circuit using the electro-optic polymer waveguides. As a result, the structure is complex enough to generate arbitrary functions and fast enough to obtain high data rates. Using the optical signal processor, we investigate interesting applications including arbitrary waveform generators.

© 2009 IEEE

Citation
Byoung-Joon Seo, Seongku Kim, Bart Bortnik, Harold Fetterman, Dan Jin, and Raluca Dinu, "Optical Signal Processor Using Electro-Optic Polymer Waveguides," J. Lightwave Technol. 27, 3092-3106 (2009)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-27-15-3092

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited