OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 27, Iss. 15 — Aug. 1, 2009
  • pp: 3143–3149

Self-Enclosed All-Fiber In-Line Etalon Strain Sensor Micromachined by 157-nm Laser Pulses

Z. L. Ran, Y. J. Rao, X. Liao, and H. Y. Deng

Journal of Lightwave Technology, Vol. 27, Issue 15, pp. 3143-3149 (2009)

View Full Text Article

Acrobat PDF (733 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


An in-line all-fiber etalon, formed by a self-enclosed Fabry–Perot cavity inside an optical fiber fabricated by using 157-nm laser micromachining, is first demonstrated in this paper. This etalon has almost perfect sensor characteristics, such as excellent interferometric fringe contrast of up to ${\sim}30$ dB, low thermal cross-sensitivity, great potential to realize mass-production with good reproducibility, low cost, super capability to operate in harsh environments, etc. The static, quasi-static, and dynamic strain characteristics of the etalon sensor are investigated, which prove that such an etalon could meet versatile applications for strain measurement.

© 2009 IEEE

Z. L. Ran, Y. J. Rao, X. Liao, and H. Y. Deng , "Self-Enclosed All-Fiber In-Line Etalon Strain Sensor Micromachined by 157-nm Laser Pulses," J. Lightwave Technol. 27, 3143-3149 (2009)

Sort:  Year  |  Journal  |  Reset


  1. Y. J. Rao, "Review article: In-fiber Bragg grating sensors," Meas. Sci. Technol. 8, 355-375 (1997).
  2. Y. J. Rao, "Recent progress in applications of in-fibre Bragg grating sensors," Opt. Lasers. Eng. 13, 297-324 (1999).
  3. R. O. Claus, M. F. Gunther, A. B. Wang, K. A. Murphy, D. Sun, Applications of Fiber Optic Sensors in Engineering Mechanics (ASCE, 1993).
  4. J. S. Sirkis, D. D. Brennan, M. A. Putman, T. A. Berkoff, A. D. Kersey, E. J. Friebele, "In-line fiber etalon for strain measurement," Opt. Lett. 18, 1973-1975 (1993).
  5. J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, M. A. Putnam, "In-line fiber etalon (ILFE) fiber-optic strain sensors," J. Lightw. Technol. 13, 1256-1263 (1995).
  6. Y. J. Rao, D. A. Jackson, "Review article: Recent progress in fiber-optic low-coherence interferometry," Meas. Sci. Technol. 7, 981-999 (1996).
  7. H. F. Taylor, Fiber Optic Sensors (Marcel Dekker, 2002).
  8. Y. J. Rao, "Review article: Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors ," Opt. Fiber Technol. 12, 227-237 (2006).
  9. J. L. Santos, A. P. Leite, D. A. Jackson, "Optical fiber sensing with a low-finesse Fabry–Perot cavity," Appl. Opt. 31, 7361-7366 (1992).
  10. K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, R. O. Claus, "Quadrature phase-shifted, extrinsic Fabry–Perot optical fiber sensors," Opt. Lett. 16, 273-275 (1991).
  11. R. O. Claus, M. F. Gunther, A. Wang, K. A. Murphy, "Extrinsic Fabry–Perot sensor for strain and crack opening displacement measurements from ${-}200$ to 900 degrees," Smart Mater. Struct. 1, 237-242 (1992).
  12. M. Schmidt, N. Fürstenau, "Fiber-optic extrinsic Fabry–Perot interferometer sensors with three-wavelength digital phase demodulation," Opt. Lett. 24, 599-601 (1999).
  13. M. Schmidt, B. Werther, N. Fürstenau, "Fiber-optic extrinsic Fabry–Perot interferometer strain sensor with $< 50$ pm displacement resolution using three-wavelength digital phase demodulation ," Opt. Exp. 8, 475-480 (2001).
  14. X. P. Chen, F. B. Shen, Z. Wang, Z. Y. Huang, A. B. Wang, "Micro-air-gap based intrinsic Fabry–Perot interferometric fiber-optic sensor," Appl. Opt. 45, 7760-7766 (2006).
  15. E. Cibula, D. Donlagic, "In-line short cavity Fabry–Perot strain sensor for quasi distributed measurement utilizing standard OTDR," Opt. Exp. 15, 8719-8730 (2007).
  16. K. Obata, K. Sugioka, T. Akane, N. Aoki, K. Toyoda, K. Midorikawa, "Influence of laser fluence and irradiation timing of F$_{2}$ laser on ablation properties of fused silica in F$_{2}$ -KrF excimer laser multi-wavelength excitation process," Appl. Phys. A 73, 755-759 (2001).
  17. V. Bhatia, M. B. Sen, K. A. Murphy, R. O. Claus, "Wavelength-tracked white light interferometry for highly sensitive strain and temperature measurement ," Electron. Lett. 32, 247-249 (1996).
  18. H. Singh, J. S. Sirkis, "Simultaneously measuring temperature and strain using optical fiber microcavities," J. Lightw. Technol. 15, 647-653 (1997).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited