OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 27, Iss. 15 — Aug. 1, 2009
  • pp: 3162–3174

Comprehensive Finite-Difference Time-Dependent Beam Propagation Model of Counterpropagating Picosecond Pulses in a Semiconductor Optical Amplifier

Mohammad Razaghi, Vahid Ahmadi, and Michael J. Connelly

Journal of Lightwave Technology, Vol. 27, Issue 15, pp. 3162-3174 (2009)


View Full Text Article

Acrobat PDF (825 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

In this paper, we present a numerical model to study counter pulse propagation in semiconductor optical amplifiers. An improved finite-difference beam propagation method for solving the modified nonlinear Schrödinger equation is applied for the first time in the counterpropagation regime. In our model, group velocity dispersion, two-photon absorption, ultrafast nonlinear refraction, and the change in the gain peak wavelength with carrier density are included, which have not been considered simultaneously in previous counterpropagation models. The model is applied to demonstrate how a subpicosecond and picosecond probe pulse shape and spectrum can be modified by a counterpropagating pump pulse. Based on the results obtained by this model, while subpicosecond probe pulses can be compressed by in this scheme, their time-bandwidth product are also improved significantly. Furthermore, the effects of several parameters are analyzed to obtain the proper probe spectral peak shift using counterpropagating probe pulses. The accuracy and computational efficiency of the new scheme are assessed through numerical examples and are shown to be superior to previously published approaches.

© 2009 IEEE

Citation
Mohammad Razaghi, Vahid Ahmadi, and Michael J. Connelly, "Comprehensive Finite-Difference Time-Dependent Beam Propagation Model of Counterpropagating Picosecond Pulses in a Semiconductor Optical Amplifier," J. Lightwave Technol. 27, 3162-3174 (2009)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-27-15-3162


Sort:  Year  |  Journal  |  Reset

References

  1. M. J. Connelly, Semiconductor Optical Amplifiers (Kluwer, 2002).
  2. R. Gutiérrez-Castrejón, L. Schares, L. Occhi, G. Guekos, "Modeling and measurement of longitudinal gain dynamics in saturated semiconductor optical amplifiers of different length," IEEE J. Quantum Electron. 36, 1476-1484 (2000).
  3. L. Occhi, L. Schares, G. Guekos, "Phase modeling based on the $\alpha$-factor in bulk semiconductor optical amplifiers," IEEE J. Sel. Topics Quantum. Electron. 9, 788-797 (2003).
  4. H. J. S. Dorren, G. D. Khoe, D. Lenstra, "All-optical switching of an ultrashort pulse using a semiconductor optical amplifier in a Sagnac-interferometric arrangement," Opt. Commun. 205, 247-252 (2002).
  5. H. J. S. Dorren, D. Lenstra, L. Yong, M. T. Hill, G. D. Khoe, "Nonlinear polarization rotation in semiconductor optical amplifiers: Theory and application to all-optical flip-flop memories," IEEE J. Quantum Electron. 39, 141-148 (2003).
  6. K. E. Stubkjaer, "Semiconductor optical amplifier-based all-optical gates for high-speed optical processing," IEEE J. Sel. Topics Quantum. Electron. 6, 1428-1435 (2000).
  7. C. G. Lee, Y. J. Kim, C.-S. Park, "Optical pulse shaping by cross-phase modulation in a harmonic mode-locked semiconductor fiber ring laser under large cavity detuning," J. Lightw. Technol. 24, 1237-1246 (2006).
  8. D. Nesset, T. Kelly, D. Marcenac, "All-optical wavelength conversion using SOA nonlinearities," IEEE Commun. Mag. 36, 56-61 (1998).
  9. A. Hamié, A. Sharaiha, M. Guegan, J. L. Bihan, "All-optical inverted and noninverted wavelength conversion using two-cascaded semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 17, 1229-1231 (2005).
  10. M. Amaya, A. Sharaiha, F. Ginovart, "Comparison between co- and counter-propagative optical injection near the transparency wavelength on SOA static and dynamic performances," Opt. Commun. 246, 67-71 (2005).
  11. A. Sharaiha, A. Hamie, "Comprehensive analysis of two cascaded semiconductor optical amplifiers for all-optical switching operation," J. Lightw. Technol. 22, 850-858 (2004).
  12. S. Bischoff, A. Buxens, H. N. Poulsen, A. T. Clausen, J. Mørk, "Bidirectional four-wave mixing in semiconductor optical amplifiers: Theory and experiment," J. Lightw. Technol. 17, 1617-1625 (1999).
  13. G. P. Agrawal, N. A. Olsson, "Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers," IEEE J. Quantum Electron. 25, 2297-2306 (1989).
  14. L. Schares, C. Schubert, C. Schmidt, H. G. Weber, L. Occhi, G. Guekos, "Phase dynamics of semiconductor optical amplifiers at 10–40 GHz," IEEE J. Quantum Electron. 39, 1394-1408 (2003).
  15. A. Mecozzi, J. Mørk, "Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers," IEEE J. Sel. Topics Quantum. Electron. 3, 1190-1207 (1997).
  16. P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, F. Martelli, "Measurement and calculation of the critical pulsewidth for gain saturation in semiconductor optical amplifiers," Opt. Commun. 164, 51-55 (1999).
  17. R. S. Grant, W. Sibbet, "Observations of ultrafast nonlinear refraction in an InGaAsP optical amplifier," Appl. Phys. Lett. 59, 1119-1121 (1991).
  18. M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, P. J. Delfyett, "Subpicosecond pulse amplification in semiconductor laser amplifiers: Theory and experiment," IEEE J. Quantum Electron. 30, 1122-1131 (1994).
  19. J. M. Tang, K. A. Shore, "Strong picosecond optical pulse propagation in semiconductor optical amplifiers at transparency," IEEE J. Quantum Electron. 34, 1263-1269 (1998).
  20. K. Obermann, S. Kindt, D. Breuer, K. Petermann, "Performance analysis of wavelength converters based on cross-gain modulation in semiconductor-optical amplifiers," J. Lightw. Technol. 16, 78-85 (1998).
  21. Y. Kim, H. Lee, S. Kim, J. Ko, J. Jeong, "Analysis of frequency chirping and extinction ratio of optical phase conjugate signals by four-wave mixing in SOA's," IEEE J. Sel. Topics Quantum. Electron. 5, 873-879 (1999).
  22. A. E. Willner, W. Shieh, "Optimal spectral and power parameters for all-optical wavelength shifting: Single stage, fanout, and cascadability," J. Lightw. Technol. 13, 771-781 (1995).
  23. N. K. Das, Y. Yamayoshi, H. Kawaguchi, "Analysis of basic four-wave mixing characteristics in a semiconductor optical amplifier by the finite-difference beam propagation method," IEEE J. Quantum Electron. 36, 1184-1192 (2000).
  24. T. Durhuus, B. Mikkelsen, K. E. Stubkjaer, "Detailed dynamic model for semiconductor optical amplifiers and their crosstalk and intermodulation distortion," J. Lightw. Technol. 10, 1056-1065 (1992).
  25. G. Toptchiyski, S. Kindt, K. Petermann, E. Hilliger, S. Diez, H. G. Weber, "Time-domain modeling of semiconductor optical amplifiers for OTDM applications," J. Lightw. Technol. 17, 2577-2583 (1999).
  26. J. W. D. Chi, C. Lu, M. K. Rao, "Time-domain large-signal investigation on nonlinear interactions between an optical pulse and semiconductor waveguides," IEEE J. Quantum Electron. 37, 1329-1336 (2001).
  27. R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert, "Numerical techniques for modeling guided-wave photonic devices," IEEE J. Sel. Topics Quantum. Electron. 6, 150-162 (2000).
  28. J. Shibayama, A. Yamahira, T. Mugita, J. Yamauchi, H. Nakano, "A finite-difference time-domain beam-propagation method for TE- and TM-wave analyses," J. Lightw. Technol. 21, 1709-1715 (2003).
  29. C. Ma, E. Van Keuren, "A three-dimensional wide-angle BPM for optical waveguide structures," Opt. Exp. 15, 402-407 (2007).
  30. M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, P. J. Delfyett, S. Dijaili, F. G. Patterson, "Femtosecond self- and cross-phase modulation in semiconductor laser amplifiers," IEEE J. Sel. Topics Quantum. Electron. 2, 523-539 (1996).
  31. L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Carroll, R. G. S. Plumb, "Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model," IEEE J. Quantum Electron. 30, 1389-1395 (1994).
  32. H. Adachihara, R. A. Indik, J. V. Moloney, "Semiconductor laser array dynamics: Numerical simulations on multistripe index-guided lasers," J. Opt. Soc. Am. B 10, 496 (1993).
  33. W. H. Press, S. A. Teukolsky, B. P. Flannery, W. T. Vetterling, Numerical Recipes in Fortran (Cambridge Univ. Press, 1992).
  34. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001).
  35. C. M. de Sterke, K. R. Jackson, B. D. Robert, "Nonlinear coupled-mode equations on a finite interval: A numerical procedure," J. Opt. Soc. Am. B 8, 403 (1991).
  36. A. Fernandez, P. Morel, J. W. D. Chi, "Temporal and spectral properties of contra-propagating picosecond optical pulses in SOA," Opt. Commun. 259, 465-469 (2006).
  37. J. M. Tang, K. A. Shore, "Active picosecond optical pulse compression in semiconductor optical amplifiers," IEEE J. Quantum Electron. 35, 93-100 (1999).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited