OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 27, Iss. 15 — Aug. 1, 2009
  • pp: 3175–3180

Ultrahigh Birefringent Photonic Crystal Fiber With Ultralow Confinement Loss Using Four Airholes in the Core

Lin An, Zheng Zheng, Zheng Li, Tao Zhou, and Jiangtao Cheng

Journal of Lightwave Technology, Vol. 27, Issue 15, pp. 3175-3180 (2009)


View Full Text Article

Acrobat PDF (497 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

A simple photonic crystal fiber (PCF) design with a rectangular array of four airholes in the core region and a traditional circular-airhole cladding is proposed in this work. The modal birefringence is induced by the asymmetry of the rectangular distribution of four airholes and/or the elliptical shape of the holes. The traditional symmetric cladding structure results in good confinement loss performance by limiting the light in the core region. Therefore, the proposed design enables simultaneous realization of high birefringence and low confinement loss. Simulations based on the full-vector finite element method (FEM) with anisotropic (PML) show that ultrahigh single-mode birefringence $(\sim 10^{-2})$ and ultralow confinement losses ($<$0.002 dB/km) can be achieved at 1.55 $\mu{\rm m}$ wavelength. Dependence study of the birefringence and losses on several key parameters is also provided. Compared to previously studied PCF with asymmetric core or cladding structures, by having just four relatively large airholes in the core, this design could be much easier to be implemented with even better performance.

© 2009 IEEE

Citation
Lin An, Zheng Zheng, Zheng Li, Tao Zhou, and Jiangtao Cheng, "Ultrahigh Birefringent Photonic Crystal Fiber With Ultralow Confinement Loss Using Four Airholes in the Core," J. Lightwave Technol. 27, 3175-3180 (2009)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-27-15-3175


Sort:  Year  |  Journal  |  Reset

References

  1. J. C. Knight, P. S. J. Russell, "Photonic crystal fibers: New way to guide light," Science 296, 276-277 (2002).
  2. J. C. Knight, T. A. Birks, P. S. J. Russell, D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
  3. T. A. Birks, J. C. Knight, P. S. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
  4. J. C. Knight, J. Broeng, T. A. Birks, P. S. J. Russell, "Photonic band gap guidance in optical fibers," Science 282, 1476-1478 (1998).
  5. T. Matsui, J. Zhou, K. Nakajima, I. Sankawa, "Dispersion-flattened photonic crystal fiber with large effective area and low confinement loss," J. Lightw. Technol. 23, 4178-4183 (2005).
  6. N. Florous, K. Saitoh, M. Koshiba, "The role of artificial defects for engineering large effective mode area, flat chromatic dispersion, and low leakage losses in photonic crystal fibers: Towards high speed reconfigurable transmission platforms," Opt. Exp. 14, 901-913 (2006).
  7. S. Yang, Y. J. Zhang, X. Z. Peng, Y. Lu, S. H. Xie, "Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field," Opt. Exp. 14, 3015-3023 (2006).
  8. Y. Tsuchida, K. Saitoh, M. Koshiba, "Design of single-moded holey fibers with large-mode-area and low bending losses: The significance of the ring-core region," Opt. Exp. 15, 1794-1803 (2007).
  9. S. M. A. Razzak, Y. Namihira, "Proposal for highly nonlinear dispersion-flattened octagonal photonic crystal fibers," IEEE Photon. Technol. Lett. 20, 249-251 (2008).
  10. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, P. S. J. Russell, "Highly birefringent photonic crystal fibers," Opt. Lett. 25, 1325-1327 (2000).
  11. P. R. Chaudhuri, V. Paulose, C. Zhao, C. Lu, "Near-elliptic core polarization-maintaining photonic crystal fiber: Modeling birefringence characteristics and realization," IEEE Photon. Technol. Lett. 16, 1301-1303 (2004).
  12. A. Ortigosa-Blanch, A. Diez, M. Delgado-Pinar, J. L. Cruz, M. V. Andres, "Ultrahigh birefringent nonlinear microstructured fiber," IEEE Photon. Technol. Lett. 16, 1667-1669 (2004).
  13. K. Saitoh, M. Koshiba, "Single-polarization single-mode photonic crystal fibers," IEEE Photon. Technol. Lett. 15, 1384-1386 (2003).
  14. M. Delgado-Pinar, A. Diez, J. L. Cruz, M. V. Andres, "High extinction-ratio polarizing endlessly single-mode photonic crystal fiber," IEEE Photon. Technol. Lett. 19, 562-564 (2007).
  15. J. R. Folkenberg, M. D. Nielsen, C. Jakobsen, "Broadband single-polarization photonic crystal fiber," Opt. Lett. 30, 1446-1448 (2005).
  16. M. Eguchi, Y. Tsuji, "Single-mode single-polarization holey fiber using anisotropic fundamental space-filling mode," Opt. Lett. 32, 2112-2114 (2007).
  17. Y. Yue, G. Y. Kai, Z. Wang, T. T. Sun, L. Jin, Y. F. Lu, C. S. Zhang, L. G. Liu, Y. Li, Y. G. Liu, S. Z. Yuan, X. Y. Dong, "Highly birefringent elliptical-hole photonic crystal fiber with squeezed hexagonal lattice," Opt. Lett. 32, 469-471 (2007).
  18. D. Chen, L. Shen, "Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss," IEEE Photon. Technol. Lett. 19, 185-187 (2007).
  19. N. A. Issa, M. A. van Eijkelenborg, M. Fellew, F. Cox, G. Henry, M. C. J. Large, "Fabrication and study of microstructured optical fibers with elliptical holes," Opt. Lett. 29, 1336-1338 (2004).
  20. W. Belardi, G. Bouwmans, L. Provino, M. Douay, "Form-induced birefringence in elliptical hollow photonic crystal fiber with large mode area," IEEE J. Quantum Electron. 41, 1558-1564 (2005).
  21. G. P. Agrawal, Fiber-optic Communication Systems, 3rd Ed. (Wiley, 2002).
  22. M. J. Steel, R. M. Osgood, "Polarization and dispersive properties of elliptical-hole photonic crystal," J. Lightw. Technol. 19, 495-503 (2001).
  23. Z. Guiyao, H. Zhiyun, L. Shuguang, H. Lantian, "Fabrication of glass photonic crystal fibers with a die-cast process," Appl. Opt. 45, 4433-4436 (2006).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited