OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 27, Iss. 15 — Aug. 1, 2009
  • pp: 3181–3188

Modeling Widely Tunable Sampled-Grating DBR Lasers Using Traveling-Wave Model With Digital Filter Approach

Lei Dong, Ruikang Zhang, Dingli Wang, Shengzhi Zhao, Shan Jiang, Yonglin Yu, and Shuihua Liu

Journal of Lightwave Technology, Vol. 27, Issue 15, pp. 3181-3188 (2009)

View Full Text Article

Acrobat PDF (427 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


A theoretical model for simulating widely tunable sampled-grating distributed Bragg reflector (SGDBR) lasers has been developed. The model integrates both time-domain traveling-wave method and frequency-domain transfer-matrix method into a single procedure. The active region of the device is still operated in the conventional time domain, while the passive parts are firstly performed by the transfer-matrix method and then transformed to the time domain via digital filters. Both the static and dynamic characteristics of SGDBR lasers, such as L–I curve, output spectrum, tuning characteristics, large-signal modulation, and dynamic wavelength switching, can be clearly visible in our model and in qualitative agreement with the published experimental results.

© 2009 IEEE

Lei Dong, Ruikang Zhang, Dingli Wang, Shengzhi Zhao, Shan Jiang, Yonglin Yu, and Shuihua Liu, "Modeling Widely Tunable Sampled-Grating DBR Lasers Using Traveling-Wave Model With Digital Filter Approach," J. Lightwave Technol. 27, 3181-3188 (2009)

Sort:  Year  |  Journal  |  Reset


  1. J. Buus, E. J. Murphy, "Tunable lasers in optical networks," J. Lightw. Technol. 24, 5-11 (2006).
  2. L. A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, L. Johansson, C. W. Coldren, "Tunable semiconductor lasers: A tutorial," J. Lightw. Technol. 22, 193-202 (2004).
  3. V. Jayaraman, Z.-M. Chuang, L. A. Coldren, "Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings," IEEE J. Quantum Electron. 29, 1824-1834 (1993).
  4. S.-L. Lee, M. E. Heimbuch, D. A. Cohen, L. A. Coldren, S. P. DenBaars, "Integration of semiconductor laser amplifiers with sampled grating tunable lasers for WDM applications," IEEE J. Sel. Topics Quantum Electron. 3, 615-627 (1997).
  5. J. W. Raring, L. A. Johansson, E. J. Skogen, M. N. Sysak, H. N. Poulsen, S. P. DenBaars, L. A. Coldren, "40-Gb/s widely tunable low-drive-voltage electroabsorption-modulated transmitters," J. Lightw. Technol 25, 239-248 (2007).
  6. M. L. Mašanovic, V. Lal, J. A. Summers, J. S. Barton, E. J. Skogen, L. A. Coldren, D. J. Blumenthal, "Design and performance of a monolithically integrated widely tunable all-optical wavelength converter with independent phase control," IEEE Photon. Technol. Lett. 16, 2299-2301 (2004).
  7. S. F. Yu, "Dynamic behavior of vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 32, 1168-1179 (1996).
  8. D. J. Jones, L. M. Zhang, J. E. Carroll, D. D. Marcenac, "Dynamics of monolithic passively mode-locked semiconductor lasers," IEEE J. Quantum Electron. 31, 1051-1058 (1995).
  9. B.-S. Kim, Y. Chung, S.-H. Kim, "Dynamics analysis of mode-locked sampled-grating distributed bragg reflector laser diodes," IEEE J. Quantum Electron. 35, 1623-1628 (1999).
  10. J. Carroll, J. Whiteaway, D. Plumb, Distributed Feedback Semiconductor Lasers (IEE SPIE Optical Engineering Press, 1998).
  11. C. K. Gardiner, R. G. S. Plumb, P. J. Williams, T. J. Reid, "Three-sections sampled-grating DBR lasers: Modeling and measurement," IEE Proc. -Optoelectron 143, 24-30 (1996).
  12. S. A. Wood, R. G. Plumb, D. J. Robbins, N. D. Whitbread, P. J. Williams, "Time domain modeling of sampled grating tunable lasers," Proc. Inst. Elect. Eng. -Optoelectron. 147, 43-48 (2000).
  13. S. K. Mitra, Digital Signal Processing: A Compute-Based Approach (McGraw-Hill, 2006).
  14. O. A. Lavrova, D. J. Blumenthal, "Detailed transfer matrix method-based dynamic model for multisection widely tunable GCSR lasers," J. Lightw. Technol. 18, 1274-1283 (2000).
  15. W. Li, W.-P. Huang, X. Li, "Digital filter approach for simulation of a complex integrated laser diode based on the traveling-wave model," IEEE J. Quantum Electron. 40, 473-480 (2004).
  16. L. A. Coldren, S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley & Sons, 1995).
  17. T. Makino, "Transfer-matrix formulation of spontaneous emission noise of DFB semiconductor lasers," J. Lightw. Technol. 9, 84-91 (1991).
  18. J. Buus, M.-C. Amann, D. J. Blumenthal, Tunable Laser Diodes and Related Optical Sources (Wiley-IEEE Press, 2005).
  19. B. Mason, G. A. Fish, S. P. DenBaars, L. A. Coldren, "Widely tunable sampled grating DBR laser with integrated electroabsorption modulator," IEEE Photon. Technol. Lett. 11, 638-640 (1999).
  20. X. Li, X. Chen, M. Qasmi, "A broadband digital filtering approach for time-domain simulation of pulse propagation in optical fiber," J. Lightw. Technol. 23, 964-875 (2005).
  21. S. F. Yu, "Time-domain traveling-wave algorithms on the analysis of distributed feedback lasers," Proc. Inst. Elect. Eng-Optoelectron 150, 266-272 (2003).
  22. M. L. Majewski, J. Barton, L. A. Coldren, Y. Akulova, M. C. Larson, "Directly intensity modulation in sampled-grating DBR lasers," IEEE Photon. Technol. Lett. 14, 747-749 (2002).
  23. F. Delorme, "Widely tunable 1.55- $\mu{\hbox {m}}$ lasers for wavelength-division-multiplexed optical fiber communications," IEEE J. Quantum Electron. 34, 1706-1716 (1998).
  24. Y. Yu, R. O'Dowd, "Influence of mode competition on the fast wavelength switching of an SG-DBR laser," J. Lightw. Technol. 20, 700-704 (2002).
  25. L. Zhang, J. C. Cartledge, "Fast wavelength switching of three-section DBR lasers," IEEE J. Quantum Electron. 31, 75-81 (1995).
  26. M. Teshima, "Dynamic wavelength tuning characteristics of the 1.5 $\mu{\hbox {m}}$ three-section DBR lasers: Analysis and experiment," IEEE J. Quantum Electron. 31, 1389-1400 (1995).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited