OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 27, Iss. 15 — Aug. 1, 2009
  • pp: 3202–3211

Dual-Threshold Balanced Homodyne Detection at 1550 nm Optical Fiber Quantum Key Distribution System

Q. Xu, M. Sabban, M. B. Costa e Silva, P. Gallion, and F. J. Mendieta

Journal of Lightwave Technology, Vol. 27, Issue 15, pp. 3202-3211 (2009)


View Full Text Article

Acrobat PDF (1576 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We present a flexible quantum key distribution (QKD) system implementation using quadrature phase-shift keying (QPSK) encoding. Two detection techniques are implemented and compared: a photon counting detection scheme using single photon avalanche diodes (SPAD) and a dual-threshold balanced homodyne detection (BHD) using standard PIN diodes in which the weak signal is time-multiplexed with a strong reference. The interferometer instability and the system phase fluctuations are compensated by an optoelectronic feedback loop that allows an automatic continuous operation. We compare the QKD system performance for both schemes in terms of BER and key generation efficiency. Finally, we analyze the BHD QKD system security under the potential individual intercept-resend attack and the intermediate-base attack.

© 2009 IEEE

Citation
Q. Xu, M. Sabban, M. B. Costa e Silva, P. Gallion, and F. J. Mendieta, "Dual-Threshold Balanced Homodyne Detection at 1550 nm Optical Fiber Quantum Key Distribution System," J. Lightwave Technol. 27, 3202-3211 (2009)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-27-15-3202


Sort:  Year  |  Journal  |  Reset

References

  1. C. H. Bennett, G. Brassard, "Quantum cryptography: Public key distribution and coin tossing," Proc. Int. Conf. Comput., Syst. & Signal Process. (1984) pp. 175-179.
  2. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, "Quantum cryptography," Rev. Mod. Phy. 74, 145-195 (2002).
  3. F. Grosshans, P. Grangier, "Continuous variable quantum cryptography using coherent states," Phys. Rev. Lett. 88, 057902 (2002).
  4. A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, N. Gisin, "‘Plug and play’ systems for quantum cryptography," Appl. Phys. Lett. 70, 793-795 (1997).
  5. H. Zbinden, J.-D. Gautier, N. Gisin, B. Huttner, A. Muller, W. Tittel, "Interferometry with Faraday mirrors for quantum cryptography," Electron. Lett. 33, 586-588 (1997).
  6. N. Gisin, S. Fasel, B. Kraus, H. Zbinden, G. Ribordy, "Trojan-horse attacks on quantum-key-distribution systems," Phys. Rev. A 73, 022320 (2006).
  7. J.-M. Merolla, Y. Mazurenko, J. P. Goedgebuer, H. Porte, W. T. Rhodes, "Phase-modulation transmission system for quantum cryptography," Opt. Lett. 24, 104-106 (1999).
  8. T. Okoshi, "Recent advances in coherent optical fiber communication systems," J. Lightw. Tech. 5, 44-52 (Jan. 1987).
  9. L. G. Kazovsky, "Balanced phase-locked loops for optical homodyne receivers," J. Lightw. Tech. 4, 182-195 (Feb. 1986).
  10. T. Chikama, T. Naito, S. Watanabe, T. Kiyonaga, M. Suyama, H. Kuwahara, "Optical heterodyne image-rejection receiver for high-density optical frequency division multiplexing system," IEEE J. Sel. Areas Commun. 8, 1087-1094 (1990).
  11. C. Xu, X. Liu, X. Wei, "Differential phase-shift keying for high spectral efficiency optical transmissions," IEEE J. Sel. Topics Quantum Electron. 10, 281-293 (2004).
  12. A. H. Gnauck, P. J. Winzer, "Optical phase-shift-keyed transmission," J. Lightw. Tech. 23, 115-130 (2005).
  13. H. P. Yuen, V. W. S. Chan, "Noise in homodyne and heterodyne detection," Opt. Lett. 8, 177-179 (1983).
  14. T. Hirano, H. Yamanaka, M. Ashikaga, T. Konishi, R. Namiki, "Quantum cryptography using pulsed homodyne detection," Phys. Rev. A 68, 042331 (2003).
  15. J. R. Barry, E. A. Lee, "Performance of coherent optical receivers," Proc. IEEE 78, 1369-1393 (1990).
  16. H. P. Yuen, J. H. Shapiro, "Optical communication with 2-photon coherent states. 3. Quantum measurements realizable with photo-emissive detectors," IEEE Trans. Inf. Theory 26, 78-82 (1980).
  17. R. J. Glauber, "Coherent and incoherent states of the radiation field," Phys. Rev. 131, 2766-2788 (1963).
  18. C. W. Helstrom, Quantum Detection and Estimation Theory, Mathematics in Science and Engineering (Academic Press, 1976).
  19. J. G. Webb, T. C. Ralph, E. H. Huntington, "Homodyne measurement of the average photon number," Phys. Rev. A 73, 033808 (2006).
  20. R. L. Cook, P. J. Martin, J. M. Geremia, "Optical coherent state discrimination using a real-time closed-loop quantum measurement," Nature 446, 774-777 (2007).
  21. B. B. Elliott, O. Pikalo, J. Schlafer, G. Troxel, "Path-length control in an interferometric QKD link," Quantum Information and Computation, Proc. SPIE 5105, 26-38 (2003).
  22. V. Makarov, A. Brylevski, D. R. Hjelme, "Real-time phase tracking in single-photon interferometers," J. Appl. Opt. 43, 4385-4392 (2004).
  23. Q. Xu, M. B. Costa e Silva, P. Gallion, F. Mendieta, "One way differential QPSK quantum key with channel impairment compensation," CLEO/Europe-IQEC JSI-3 (2007).
  24. Q. Xu, M. B. Costa e Silva, P. Gallion, F. Mendieta, "Auto-compensating quantum Crypto-system using homodyne detection," Opt. Fiber Commun. Conf. 2008 .
  25. "Single-photon detection with InGaAs/InP avalanche photodetectors," Single-Photon Detector Module: Application Note http://www.idquantique.com Id Quantique.
  26. MagiQ Quantum Cryptography Test Bed: Uncompromising Research Results (2005) http://www.magiqtech.com MagiQ Technologies, Inc..
  27. K.-P. Ho, Phase-Modulated Optical Communication Systems (Springer, 2005).
  28. P. Agrawal, Fiber-Optic Communication Systems (Wiley-Interscience, 2002).
  29. W.-Y. Hwang, "Quantum key distribution with high loss: Toward global secure communication," Phys. Rev. Lett. 91, 057901 (2003).
  30. X.-F. Ma, B. Qi, Y. Zhao, H.-K. Lo, "Practical decoy state for quantum key distribution," Phys. Rev. A 72, 012326 (2005).
  31. X.-B. Wang, "Beating the photon pulse-number-splitting attack in practical quantum cryptography," Phys. Rev. Lett. 94, 230503-1-230503-4 (2005).
  32. H.-K. Lo, "Decoy state quantum key distribution," Phys. Rev. Lett. 94, 230504 (2005).
  33. D. Rosenberg, "Long-distance decoy-state quantum key distribution in optical fiber," Phys. Rev. Lett. 98, 010503 (2007).
  34. C. E. Shannon, "A mathematical theory of communication," Bell Syst. Tech. J. 27, 379–423, 623-656 (1948).
  35. C. H. Bennett, G. Brassard, J.-M. Robert, "Privacy amplification by public discussion," SIAM J. Comput. 17, 1919-1923 (1988).
  36. C. H. Bennett, G. Brassard, C. Crépeau, U. M. Maurer, "Generalized privacy amplification," IEEE Trans. Inf. Theory 41, 1915-1923 (1995).
  37. M. Koashi, "Unconditional security of coherent state quantum key distribution with a strong reference phase pulse," Phys. Rev. Lett. 93, 120501 (2004).
  38. R. Namiki, T. Hirano, "Security of quantum cryptography using balanced homodyne detection," Phys. Rev. A 67, 022308 (2003).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited