OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 27, Iss. 15 — Aug. 1, 2009
  • pp: 3241–3248

Nonlinear Pulse Evolution in Silicon Waveguides: An Approximate Analytic Approach

Ivan D. Rukhlenko, Malin Premaratne, Chethiya Dissanayake, and Govind P. Agrawal

Journal of Lightwave Technology, Vol. 27, Issue 15, pp. 3241-3248 (2009)


View Full Text Article

Acrobat PDF (500 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Owing to recent progress in silicon-on-insulator (SOI) technology for signal processing of optical pulses, a detailed intuitive understanding of the different processes governing pulse propagation through SOI waveguides is desired. Even though it is possible to carry out numerical simulations to characterize device performance by varying material and pulse parameters, such an approach does not provide an intuitive understanding. For this reason, we develop an analytic approach in this paper and present approximate solutions that are valid under realistic conditions and characterize with reasonable accuracy the dynamical evolution of a short optical pulse through SOI waveguides. Our analytical expressions take into account linear losses, Kerr nonlinearity, two-photon absorption, and free-carrier effects (both absorptive and dispersive) and thus are likely to be useful for a variety of applications in the area of silicon photonics. Even though free-carrier absorption is included, we limit our analysis to the case where its influence on the temporal pulse shape is minimal. To provide a comprehensive understanding of our results and to validate their accuracy, we consider general properties of our analytical solutions, analyze their applicability in different parametric ranges relevant for applications, and compare them with published results. We envision utilizing these results in optimizing the design of SOI-based devices aimed at integrated optics applications.

© 2009 IEEE

Citation
Ivan D. Rukhlenko, Malin Premaratne, Chethiya Dissanayake, and Govind P. Agrawal, "Nonlinear Pulse Evolution in Silicon Waveguides: An Approximate Analytic Approach," J. Lightwave Technol. 27, 3241-3248 (2009)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-27-15-3241


Sort:  Year  |  Journal  |  Reset

References

  1. M. Dinu, F. Quochi, H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003).
  2. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, B. Jalali, "Observation of stimulated Raman amplification in silicon waveguides," Opt. Express 11, 1731-1739 (2003).
  3. R. W. Boyd, Nonlinear Optics (Academic Press, 2003).
  4. G. W. Rieger, K. S. Virk, J. F. Yong, "Nonlinear propagation of ultrafast 1.5 $\mu$m pulses in high-index-contrast silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 900-902 (2004).
  5. H. K. Tsang, Y. Liu, "Nonlinear optical properties of silicon waveguides," Semicond. Sci. Technol. 23, 064007(1–9)- (2008).
  6. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev, "Strained silicon as a new electro-optic material," Nature 441, 199-202 (2006).
  7. E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, Y. A. Vlasov, "Group index and group velocity dispersion in silicon on insulator photonic wires," Opt. Express 14, 3853-3863 (2006).
  8. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, A. L. Gaeta, "Tailored anomalous GVD in Si channel waveguides," Opt. Express 14, 4357-4362 (2006).
  9. X. Chen, N. Panoiu, I. Hsieh, J. I. Dadap, R. M. Osgood Jr., "Third-order dispersion and ultrafast pulse propagation in silicon wire waveguides," IEEE Photon. Technol. Lett. 18, 2617-2619 (2006).
  10. L. Yin, Q. Lin, G. P. Agrawal, "Dispersion tailoring and soliton propagation in silicon waveguides," Opt. Lett. 31, 1295-1297 (2006).
  11. G. T. Reed, A. P. Knights, Silicon Photonics: An Introduction (Wiley, 2004).
  12. R. A. Soref, "The past, present, and future of silicon photonics," IEEE J. Sel. Top. Quantum Electron. 12, 1678-1687 (2006).
  13. B. Jalali, V. Raghunathan, D. Dimitropoulos, O. Boyraz, "Raman-based silicon photonics," IEEE J. Sel. Top. Quantum Electron. 12, 412-421 (2006).
  14. O. Boyraz, P. Koonath, V. Raghunathan, B. Jalali, "All optical switching and continuum generation in silicon waveguides," Opt. Express 12, 4094-4102 (2004).
  15. I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood Jr., "Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides," Opt. Express 14, 12380-12387 (2006).
  16. J. Zhang, Q. Lin, G. Piredd, R. W. Boyd, G. P. Agrawal, P. M. Fauchet, "Optical solitons in a silicon waveguide," Opt. Express 15, 7682-7688 (2007).
  17. I.-W. Hsieh, X. Chen, X. Liu, J. I. Dadap, N. C. Panoiu, C. Y. Chou, F. Xia, W. M. Green, Y. A. Vlasov, R. M. Osgood Jr., "Supercontinuum generation in silicon photonic wires," Opt. Express 15, 15242-15249 (2007).
  18. E.-K. Tien, N. S. Yuksek, F. Qian, O. Boyraz, "Pulse compression and modelocking by using TPA in silicon waveguides," Opt. Express 15, 6500-6506 (2007).
  19. R. Claps, V. Raghunathan, D. Dimitropoulos, B. Jalali, "Anti-Stokes Raman conversion in silicon waveguides," Opt. Express 11, 2862-2872 (2003).
  20. Q. Lin, J. Zhang, P. M. Fauchet, G. P. Agrawal, "Ultrabroadband parametric generation and wavelength conversion in silicon waveguides," Opt. Express 14, 4786-4799 (2006).
  21. M. W. Geis, S. J. Spector, R. C. Williamson, T. M. Lyszczarz, "Submicrosecond, submilliwatt, silicon on insulator thermooptic switch," IEEE Photon. Technol. Lett. 16, 2514-2516 (2004).
  22. O. Boyraz, B. Jalali, "Demonstration of a silicon Raman laser," Opt. Express 12, 5269-5273 (2004).
  23. M. Krause, H. Renner, E. Brinkmeyer, "Analysis of Raman lasing characteristics in silicon-on-insulator waveguides," Opt. Express 12, 5703-5710 (2004).
  24. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
  25. A. M. Darwish, E. P. Ippen, H. Q. Lee, J. P. Donnelly, S. H. Groves, "Optimization of four-wave mixing conversion efficiency in the presence of nonlinear loss," Appl. Phys. Lett. 69, 737-739 (1996).
  26. Y.-H. Kao, T. J. Xia, M. N. Islam, "Limitations on ultrafast optical switching in a semiconductor laser amplifier operating at transparency current," J. Appl. Phys. 86, 4740-4747 (1999).
  27. T. K. Liang, H. K. Tsang, "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 2745-2747 (2004).
  28. R. Claps, V. Raghunathan, D. Dimitropoulos, B. Jalali, "Influence of nonlinear absorption on Raman amplification in silicon-on-insulator waveguides," Opt. Express 12, 2774-2780 (2004).
  29. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, M. Asghari, "Optical dispersion, two-photon absorption, and self-phase modulation in silicon waveguides at 1.5 $\mu$m wavelength," Appl. Phys. Lett. 80, 416-418 (2002).
  30. O. Boyraz, T. Indukuri, B. Jalali, "Self-phase-modulation induced spectral broadening in silicon waveguides," Opt. Express 12, 829-834 (2004).
  31. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
  32. E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, R. M. Osgood Jr., "Self-phase-modulation in submicron silicon-on-insulator photonic wires," Opt. Express 14, 5524-5534 (2006).
  33. X. Chen, N. C. Panoiu, R. M. Osgood, "Theory of Raman-mediated pulsed amplification in silicon-wire waveguides," IEEE J. Quantum Electron. 42, 160-170 (2006).
  34. I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood Jr., "Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wires," Opt. Express 15, 1135-1146 (2007).
  35. I. D. Rukhlenko, M. Premaratne, C. Dissanayake, G. P. Agrawal, "Continuous-wave Raman amplification in silicon waveguides: Beyond the undepleted pump approximation," Opt. Lett. (2009).
  36. Q. Lin, O. J. Painter, G. P. Agrawal, "Nonlinear optical phenomena in silicon waveguides: Modeling and applications," Opt. Express 15, 16604-16644 (2007).
  37. J. I. Dadap, N. C. Panoiu, X. Chen, I.-W. Hsieh, X. Liu, C.-Y. Chou, E. Dulkeith, S. J. McNab, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood Jr., "Nonlinear-optical phase modification in dispersion-engineered Si photonic wires," Opt. Express 16, 1280-1299 (2008).
  38. L. Yin, G. P. Agrawal, "Impact of two-photon absorption on self-phase modulation in silicon waveguides," Opt. Lett. 32, 2031-2033 (2007).
  39. L. Yin, Q. Lin, G. P. Agrawal, "Soliton fission and supercontinuum generation in silicon waveguides," Opt. Lett. 32, 391-393 (2007).
  40. R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, M. Först, "Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 $\mu$m femtosecond pulses," Opt. Express 14, 8336-8346 (2006).
  41. D. Dimitripoulos, R. Jhavery, R. Claps, J. C. S. Woo, B. Jalali, "Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides," Appl. Phys. Lett. 86, 071115-071117 (2005).
  42. A. Vanucci, P. Serena, A. Bononi, "The RP method: A new tool for the iterative solution of the nonlinear Schrödinger equation," J. Lightwave Technol. 20, 1102-1112 (2002).
  43. M. Premaratne, D. Nesic, G. P. Agrawal, "Pulse amplification and gain recovery in semiconductor optical amplifiers: A systematic analytical approach," IEEE J. Lightwave Technol. 26, 1653-1660 (2008).
  44. M. Premaratne, A. J. Lowery, "Analytical characterization of SOA-based optical pulse delay discriminator," IEEE J. Lightwave Technol. 23, 2778-2787 (2005).
  45. B. S. G. Pillai, M. Premaratne, D. Abramson, K. L. Lee, A. Nirmalathas, C. Lim, S. Shinada, N. Wada, T. Miyazaki, "Analytical characterization of optical pulse propagation in polarization-sensitive semiconductor optical amplifiers," IEEE J. Quantum Electronics 42, 1062-1077 (2006).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited