Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 27,
  • Issue 15,
  • pp. 3241-3248
  • (2009)

Nonlinear Pulse Evolution in Silicon Waveguides: An Approximate Analytic Approach

Not Accessible

Your library or personal account may give you access

Abstract

Owing to recent progress in silicon-on-insulator (SOI) technology for signal processing of optical pulses, a detailed intuitive understanding of the different processes governing pulse propagation through SOI waveguides is desired. Even though it is possible to carry out numerical simulations to characterize device performance by varying material and pulse parameters, such an approach does not provide an intuitive understanding. For this reason, we develop an analytic approach in this paper and present approximate solutions that are valid under realistic conditions and characterize with reasonable accuracy the dynamical evolution of a short optical pulse through SOI waveguides. Our analytical expressions take into account linear losses, Kerr nonlinearity, two-photon absorption, and free-carrier effects (both absorptive and dispersive) and thus are likely to be useful for a variety of applications in the area of silicon photonics. Even though free-carrier absorption is included, we limit our analysis to the case where its influence on the temporal pulse shape is minimal. To provide a comprehensive understanding of our results and to validate their accuracy, we consider general properties of our analytical solutions, analyze their applicability in different parametric ranges relevant for applications, and compare them with published results. We envision utilizing these results in optimizing the design of SOI-based devices aimed at integrated optics applications.

© 2009 IEEE

PDF Article
More Like This
Pulse evolution and phase-sensitive amplification in silicon waveguides

Y. Zhang, C. Husko, J. Schröder, and B. J. Eggleton
Opt. Lett. 39(18) 5329-5332 (2014)

Theory of nonlinear pulse propagation in silicon-nanocrystal waveguides

Ivan D. Rukhlenko
Opt. Express 21(3) 2832-2846 (2013)

Analytical study of optical bistability in silicon-waveguide resonators

Ivan D. Rukhlenko, Malin Premaratne, and Govind P. Agrawal
Opt. Express 17(24) 22124-22137 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.