OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 27, Iss. 15 — Aug. 1, 2009
  • pp: 3249–3258

Vertically Pluggable and Compact 10-Gb/s$\,\times\,$12-Channel Optical Modules With Anisotropic Conductive Film for Over 100-Gb/s Optical Interconnect Systems

Atsushi Suzuki, Takaaki Ishikawa, Yoshitsugu Wakazono, Youichi Hashimoto, Hiroshi Masuda, Shuji Suzuki, Mitsuaki Tamura, Tei-ichi Suzuki, Katsuya Kikuchi, Hiroshi Nakagawa, Masahiro Aoyagi, and Takashi Mikawa

Journal of Lightwave Technology, Vol. 27, Issue 15, pp. 3249-3258 (2009)


View Full Text Article

Acrobat PDF (2419 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We have developed a vertically pluggable and compact 12-channel optical module for intercabinet and intracabinet optical interconnections. Error-free and over 10 Gb/s operation of the optical module with an electrical and optical connector have been demonstrated. The module is designed to be 10 mm in width, 10 mm in length, and 6 mm in thickness so that it can be placed around the central processing units. This compact optical module can be mounted on the inner board area. Further, this module is vertically pluggable in the ${z}$-direction, i.e., in a direction that is perpendicular to the board. Because of the vertical pluggability, the optical modules can be repaired much more easily. The optical connector used in the low-height module has 12 fine-drawn graded-index multimode fibers (MMFs). These fibers have a high relative refractive index difference ($\Delta$) and are bent with a 2 mm radius of curvature. The electrical connector consists of an anisotropic conductive film that is sandwiched between an alumina substrate and a printed circuit board with a clamp spring. We have used the alumina substrate to mount the optical device and the driver integrated circuit, because of its high thermal conductivity. In order to reduce cost, we have not used either a microlens or a metal-coated mirror in the optical module. Furthermore, passive alignment between the MMFs and the optical device has been achieved using guide pins assembled in the alumina substrate.

© 2009 IEEE

Citation
Atsushi Suzuki, Takaaki Ishikawa, Yoshitsugu Wakazono, Youichi Hashimoto, Hiroshi Masuda, Shuji Suzuki, Mitsuaki Tamura, Tei-ichi Suzuki, Katsuya Kikuchi, Hiroshi Nakagawa, Masahiro Aoyagi, and Takashi Mikawa, "Vertically Pluggable and Compact 10-Gb/s$\,\times\,$12-Channel Optical Modules With Anisotropic Conductive Film for Over 100-Gb/s Optical Interconnect Systems," J. Lightwave Technol. 27, 3249-3258 (2009)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-27-15-3249


Sort:  Year  |  Journal  |  Reset

References

  1. R. E. Wagner, J. R. Igel, R. Whitman, M. D. Vaughn, A. B. Ruffin, S. Bickham, "Fiber-based broadband-access deployment in the United States," J. Lightw. Technol. 24, 4526-4540 (2006).
  2. M. J. O'Mahony, C. Politi, D. Klonidis, R. Nejabati, D. Simeonidou, "Future optical networks," J. Lightw. Technol. 24, 4684-4696 (2006).
  3. E. B. Desurvire, "Capacity demand and technology challenges for lightwave systems in the next two decades," J. Lightw. Technol. 24, 4697-4710 (2006).
  4. E. Mohammed, A. Alduino, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, R. Mooney, "Optical interconnect system integration for ultra-short-reach applications Gb/s error-free transmission," Intel Technol. J. 8, 114-129 (2004).
  5. L. Shares, J. A. Kash, F. E. Doany, C. L. Schow, C. Schuster, D. M. Kuchta, P. K. Pepeljugoski, J. M. Trewhella, C. W. Baks, R. A. John, L. Shan, Y. H. Kwark, R. A. Budd, P. Chiniwalla, F. R. Libsch, J. Rosner, C. K. Tsang, C. S. Petal, J. D. Schaub, R. Dangel, F. Horst, B. J. Offrein, D. Kucharski, D. Guckenberger, S. Hegde, H. Nyikal, C. K. Lin, A. Tandon, M. R. T. Tan, G. R. Trott, M. Nystrom, D. W. Dolfi, "Terabus: Tb/s-class card-level optical interconnect technologies," IEEE J. Sel. Topics Quantum Electron. 12, 1032-1044 (2006).
  6. P. Pepeljugoski, M. Ritter, A. Kash, F. Doany, C. Schow, Y. Kwark, L. Shan, D. Kam, X. Gu, C. Baks, "Comparison of bandwidth limit for on-card electrical and optical interconnects for 100 Gb/s and beyond," Proc. SPIE Optoelectron. Integr. Circ. X (Proceedings Volume) (2008).
  7. A. F. J. Levi, "Optical interconnects in systems," Proc. IEEE 88, 750-757 (2000).
  8. L. A. Buckman Windover, J. N. Simon, S. A. Rosenau, K. S. Giboney, G. M. Flower, L. W. Mirkarimi, A. Grot, B. Law, C.-K. Lin, A. Tandon, R. W. Gruhlke, H. Xia, G. Rankin, M. R. T. Tan, D. W. Dolfi, "Parallel-optical interconnects $ > 100\;{\rm Gb}/{\rm s}$," J. Lightw. Technol. 22, 2055-2063 (2004).
  9. D. M. Kuchta, Y. H. Kwark, C. Schuster, C. Baks, C. Haymes, J. Schaub, P. Pepeljugoski, L. Shan, R. John, D. Kucharski, D. Rogers, M. Ritter, J. Jewell, L. A. Graham, K. Schrödinger, A. Schild, H. –M. Rein, "120-Gb/s VCSEL-based parallel-optical interconnect and custom 120-Gb/s testing station," J. Lightw. Technol. 22, 2200-2212 (2004).
  10. D. M. Kuchta, C. Baks, E. Mintarno, D. N. de Araujo, M. Cases, "Optical high speed symmetric multi-processor link implementation," Proc. of 46th Electron. Compon. Technol. Conf. (ECTC) (2006) pp. 1573-1577.
  11. C. Cook, J. E. Cunningham, A. Hargrove, G. G. Ger, K. W. Goossen, W. Y. Jan, H. H. Kim, R. Krause, M. Manges, M. Morrissey, M. Perinpanayagam, A. Persaud, G. J. Shevchuk, V. Sinyansky, A. V. Krishinamoorthy, "A 36-channel parallel optical interconnect module based on optoelectronics-on-VLSI technology," IEEE J. Sel. Topics Quantum Electron. 9, 387-399 (2003).
  12. A. Suzuki, K. Suzuki, Y. Wakazono, S. Suzuki, T. Yamaguchi, H. Masuda, K. Saito, M. Kinoshita, O. Ibaragi, K. Kikuchi, H. Nakagawa, Y. Okada, M. Aoyagi, "Low-cost and high-density 10 Gbps/ch optical parallel link module for multi-terabit router application," Proc. 32nd Eur. Conf. Opt. Commun. (ECOC) (2006).
  13. I. Hatakeyama, K. Miyoshi, J. Sasaki, K. Yamamoto, M. Kurihara, T. Watanabe, J. Ushioda, Y. Hashimoto, R. Kuribayashi, K. Kurata, "A 400 Gb/s backplane switch with 10 Gbps/port optical I/O interfaces," Proc. SPIE Active and Passive Optical Components for WDM Communications V (Proceedings Volume) (2005) pp. 60140J-1-60140J-7.
  14. H. Miyoshi, I. Hatakeyama, J. Sasaki, K. Yamamoto, M. Kurihara, T. Watanabe, J. Ushioda, Y. Hashimoto, R. Kuribayashi, K. Kurata, "A 400 Gb/s backplane switch with 10 Gbps/port optical I/O interfaces based on OIP (optical interconnection as IP of a CMOS library)," Proc. Opt. Fiber Commun. Conf. (2005).
  15. Y. Taira, H. Numata, F. Yamada, Y. Katayama, S. Nakagawa, M. Hasegawa, K. Terada, Y. Tsukada, "OE device integration for optically enabled MCM," Proc. 57th Electron. Compon. Technol. Conf. (2007) pp. 1262-1267.
  16. B. E. Lemoff, M. E. Ali, G. Panotopoulos, G. M. Flower, B. Madhavan, A. F. J. Levi, D. W. Dolfi, "MAUI: Enabling fiber-to-the-processor with parallel multiwavelength optical interconnects," J. Lightw. Technol. 22, 2043-2054 (2004).
  17. E. Mohammed, J. Liao, A. Kern, D. Lu, H. Braunisch, T. Thomas, S. Hyvonen, S. Palermo, I. A. Young, "Optical hybrid package with an 8-channel 18 GT/s CMOS transceiver for chip-to-chip optical interconnect," Proc. SPIE Photonics Packaging, Integration, and Interconnects VIII (Proceedings Volume) (2008).
  18. http://www.popoptics.org/.
  19. T. Mikawa, "Low-cost high-density optical parallel link modules and optical backplane for the last 1-meter regime applications," Proc. SPIE Photon. Packag. Integr. Interconn. VIII (Proceedings Volume) (2008) pp. xi-xx.
  20. A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, M. B. Ritter, "Exploitation of optical interconnects in future server architectures," IBM J. Res. Dev. 49, 755-775 (2005).
  21. T. Ishikawa, A. Suzuki, Y. Wakazono, D. Nagao, T. Hino, Y. Hashimoto, H. Masuda, S. Suzuki, M. Tamura, T. Suzuki, K. Kikuchi, Y. Okada, H. Nakagawa, M. Aoyagi, T. Mikawa, "High-density and low-cost 10-Gbps$\,\times\,$12 ch optical modules for high-end optical interconnect applications," Proc. Opt. Fiber Commun. Conf. (2008).
  22. A. Suzuki, T. Ishikawa, Y. Wakazono, D. Nagao, T. Hino, Y. Hashimoto, H. Masuda, S. Suzuki, M. Tamura, T. Suzuki, K. Kikuchi, Y. Okada, H. Nakagawa, M. Aoyagi, T. Mikawa, "10-Gb/s$\,\times\,$12-ch downsized optical modules with electrical conductive film connector," Proc. 58th Electron. Compon. Technol. Conf. (2008) pp. 250-255.
  23. A. Suzuki, Y. Wakazono, S. Suzuki, M. Tamura, H. Masuda, T. Ishikawa, Y. Hashimoto, T. Suzuki, K. Kikuchi, H. Nakagawa, M. Aoyagi, T. Mikawa, "High optical coupling efficiency using 45$^{\circ}$-ended fibre for low-height and low-cost optical interconnect modules," Electron. Lett. 44, 724-725 (2008).
  24. Y. Wakazono, A. Suzuki, D. Nagao, T. Ishikawa, T. Hino, Y. Hashimoto, H. Masuda, S. Suzuki, M. Tamura, T. Suzuki, K. Kikuchi, H. Nakagawa, M. Aoyagi, T. Mikawa, "A study on coupling efficiency between VCSEL and 45$^{\circ}$–angled mirror component for low-cost and high-density 10 Gbps/ch optical parallel link module," Proc. 20th Annu. Meeting of the IEEE Lasers and Electro-Opt. Soc. (LEOS) (2007) pp. 678-679.
  25. T. Ohno, M. Ono, S. Wakamatsu, A. Kawamura, T. Horio, A. Suzuki, T. Kojima, T. Takada, M. Okuyama, "Alignment arrangement for low-cost embedded optical interconnection module," Proc. of 37th Int. Symp. Microelectronics (IMAPS) (2004).
  26. MEG-Array Datasheet FCI http://portal.fciconnect.com/res/en/pdffiles/datasheets/950554–007_MEG-Array.pdf.
  27. Inter Connector MT Type, Thickness: 0.1 mm, 0.25,mm, 0.5 mm, 1.0 mm & 2.0 mm Final Report Shin-Etsu polymer Co., LtdTokyoJapan (2001).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited