OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 27, Iss. 15 — Aug. 1, 2009
  • pp: 3269–3274

Nanophotonic Sensor Based on Photonic Crystal Structure Using Negative Refraction for Effective Light Coupling

F. Ouerghi, F. AbdelMalek, S. Haxha, R. Abid, H. Mejatty, and I. Dayoub

Journal of Lightwave Technology, Vol. 27, Issue 15, pp. 3269-3274 (2009)

View Full Text Article

Acrobat PDF (1875 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


In this paper, using the 2-D finite-difference time-domain (FDTD) method, we study a novel biosensor based on collimation effects in photonic crystals (PCs) with negative refractive index. Coupling the collimated beam to a line of air holes (sensing region) filled with normal air, dry air, liquid, and gas is thoroughly investigated. It is shown that by an appropriate selection of design parameters, such as, the air cylinder radii and coupling distance, it is possible to achieve ultracompact sensing platforms. The collimation effect features channel allocation in nanosystems and high sensitivity for biomolecules sensing applications.

© 2009 IEEE

F. Ouerghi, F. AbdelMalek, S. Haxha, R. Abid, H. Mejatty, and I. Dayoub, "Nanophotonic Sensor Based on Photonic Crystal Structure Using Negative Refraction for Effective Light Coupling," J. Lightwave Technol. 27, 3269-3274 (2009)

Sort:  Year  |  Journal  |  Reset


  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
  3. M. Skorobogatiy, A. V. Kabashin, "Photon crystal waveguide-based surface plasmon resonance biosensor," Appl. Phys. Lett. 89, 143518-14351 (2006).
  4. S. Boutami, B. B. Bakir, J.-L. Leclercq, X. Letartre, C. Seassal, P. R. -Romeo, P. Regreny, M. Garrigues, P. Viktorovitch, "Photonic crystal-based MOEMS devices," IEEE J. Sel. Topics Quantum Electron. 13, 244-252 (2007).
  5. W. C. L. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. W. M. Hoekstra, R. M. de Ridder, "Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors," IEEE J. Sel. Topics Quantum Electron. 11, 11-16 (2005).
  6. S. Haxha, W. Belhadj, F. AbdelMalek, H. Bouchriha, "Analyses of wavelength demultiplexer based on photonic crystals," IEE Proc., Optoelectron. 152, 193-198 (2005).
  7. W. Aroua, F. Ouerghi, S. Haxha, F. AbdelMalek, M. Mejatty, H. Bouchriha, V. Haxha, "Analysis and optimisation of high density photonic crystal devices in a subystem by use of finite difference time domain," IET Proc., Optoelectron. 2, 10-15 (2008).
  8. R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, K. Kash, "Novel applications of photonic band gap materials: Low-loss bends and high Q cavities," J. Appl. Phys. 75, 4753-4755 (1994).
  9. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, D. V. Thourhout, "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology," J. Lightw. Technol. 23, 401-412 (2005).
  10. H. Nakamura, Y. Sugimoto, K. Kanamoto, N. Ikeda, Y. Tanaka, Y. Nakamura, S. Okouchi, Y. Watanabe, K. Inoue, H. Ishikawa, K. Asakawa, "Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks," Opt. Exp. 12, 6606-6614 (2004).
  11. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
  12. M. Notomi, "Theory of light propagation in strongly modulated photonic crystal refractionlike behaviour in the vicinity of the photonic band gap," Phys. Rev. B. 62, 10696-10705 (2000).
  13. M. Qiu, L. Thylen, M. Swillo, B. Jaskorzynska, "Wave propagation through a photonic crystal in a negative phase refractive-index region," IEEE J. Sel. Topics Quantum Electron. 9, 106-110 (2000).
  14. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, C. M. Soukoulis, "Electromagnetic waves: Negative refraction by photonic crystals," Nature 423, 604 (2003).
  15. X. Wang, Z. F. Ren, K. Kempa, "Unrestricted superlensing in a triangular two dimensional photonic crystal," Opt. Exp. 12, 2919-2924 (2004).
  16. V. G. Veselago, "The electrodynamic of substances with simultaneously negative values of $\varepsilon$ and $\mu$," Sov. Phys. USPEKI 10, 509-514 (1968).
  17. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
  18. M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refraction like behavior in the vicinity of the photonic band gap," Phys. Rev. B. 62, 10696-10705 (2000).
  19. S. Foteinopoulou, E. N. Economou, C. M. Soukoulis, "Refraction in media with a negative refractive index," Phys. Rev. Lett. 90, 107402-1-107402-4 (2003).
  20. X. Ao, S. He, "Three-dimensional photonic crystal of negative refraction achieved by interference lithography," Opt. Lett. 29, 2542-2544 (2004).
  21. R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, C. M. Soukoulis, "Negative refraction and superlens behavior in a two-dimensional photonic crystal," Phys. Rev. B. 71, 085106-1-085106-5 (2005).
  22. F. AbdelMalek, W. Belhadj, S. Haxha, H. Bouchriha, "Realization of high coupling efficiency by employing a concave lens based on 2-D photonic crystals with negative refractive index," J. Lightw. Technol. 25, 3168-3174 (2007).
  23. C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B. 65, 201104-201107 (2002).
  24. C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, J. B. Pendry, "Subwavelength imaging in photonic crystals," Phys. Rev. B. 68, 045115-045129 (2003).
  25. W. Belhadj, D. Gamra, F. AbdelMalek, S. Haxha, H. Bouchriha, "Design of photonic crystal structure based in all-angle negative refractive effect for application in focusing systems," IET Proc., Optoelectron. 1, 91-95 (2007).
  26. P. A. Belov, C. R. Simovski, "Canalization of subwavelength images by electromagnetic crystals," Phys. Rev. B. 71, 193105-193108 (2005).
  27. J. Garcia-Pomar, M. Nieto-Vesperinas, "Waveguiding, collimation and subwavelength concentration in photonic crystals," Opt. Exp. 13, 7997-8007 (2005).
  28. H. Zhang, H. Zhu, L. Qian, D. Fan, "Collimations and negative refraction by slabs of 2-D photonic crystals with periodically-aligned tube-type air holes," Opt. Exp. 15, 3519-3530 (2007).
  29. S. K. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag. 14, 302-307 (1966).
  30. K. M. Leung, Y. F. Liu, "Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media," Phys. Rev. Lett. 65, 2646-2649 (1990).
  31. H. M. Masmoudi, M. A. Al-Sunaidi, J. M. Arnold, "Efficient time-domain beam-propagation method for modeling integrated optical devices," IEEE J. Lightw. Technol. 19, 759-771 (2001).
  32. J. P. A. Berenger, "Perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994).
  33. N. J. Florous, K. Saitoh, S. K. Varsheney, M. Koshiba, "Fluidic sensors based on photonic crystal fiber gratings: Impact of the ambient temperature," IEEE Photon. Technol. Lett. 18, 2206-2208 (2006).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited