OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 27, Iss. 15 — Aug. 1, 2009
  • pp: 3275–3282

Femtosecond Laser Processing as an Advantageous 3-D Technology for the Fabrication of Highly Nonlinear Chip-Scale Photonic Devices

Elena A. Romanova, Andrey I. Konyukhov, David Furniss, Angela B. Seddon, and Trevor M. Benson

Journal of Lightwave Technology, Vol. 27, Issue 15, pp. 3275-3282 (2009)

View Full Text Article

Acrobat PDF (378 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


The properties of highly nonlinear glasses for photonic devices and the advantages of processing these materials using femtosecond laser pulses are discussed in a brief review. A novel approach is proposed for the optimization of the modification process that takes into account the dispersion of the nonlinear coefficients of refraction and absorption. Numerical modeling of the pulse energy deposition into a sample of chalcogenide glass shows that the shapes and dimensions of the modified regions depend on the nonlinear coefficients.

© 2009 IEEE

Elena A. Romanova, Andrey I. Konyukhov, David Furniss, Angela B. Seddon, and Trevor M. Benson, "Femtosecond Laser Processing as an Advantageous 3-D Technology for the Fabrication of Highly Nonlinear Chip-Scale Photonic Devices," J. Lightwave Technol. 27, 3275-3282 (2009)

Sort:  Year  |  Journal  |  Reset


  1. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spalter, R. E. Slusher, S.-W. Cheong, J. S. Sanghera, I. D. Aggarwal, "Large Kerr effect in bulk Se-based chalcogenide glasses," Opt. Lett. 25, 254-256 (2000).
  2. G. Raybon, Y. Su, J. Leuthold, R. Essiambre, T. Her, C. Joergensen, P. Steinvurzel, K. Dreyer, K. Feder, "40 Gbit/s pseudo-linear transmission over one million kilometres," Proc. Conf. Opt. Commun. (OFC'2002) (2002).
  3. V. G. Ta'eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggelton, D. Y. Choi, S. Madden, B. Luther-Davies, "Ultrafast all-optical chalcogenide glass photonic circuits," Opt. Exp. 15, 9205-9221 (2007).
  4. M. E. Lines, "Oxide glasses for fast photonic switching: A comparative study," J. Appl. Phys. 69, 6876-6884 (1991).
  5. A. Seddon, "Chalcogenide glasses: A review of their preparation, properties and applications," J. Non-Crystalline Solids 184, 44-50 (1995).
  6. J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, D. J. Richardson, "Mid-IR supercontinuum generation from nonsilica microstructured optical fibers," IEEE J. Sel. Topics Quantum Electron. 13, 738-749 (2007).
  7. H. S. Brandi, C. B. de Araujo, "Multiphoton absorption coefficients in solids: A universal curve," J. Phys. C: Solid State Phys. 16, 5929-5936 (1983).
  8. K. S. Bindra, H. T. Bookey, A. K. Kar, B. S. W. Liu, A. Jha, "Nonlinear optical properties of chalcogenide glasses: Observation of multiphoton absorption," Appl. Phys. Lett. 79, 1939-1941 (2001).
  9. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. V. Stryland, "Dispersion of bound electronic nonlinear refraction in solids," IEEE J. Quant. Electron. 27, 1296-1309 (1991).
  10. J. M. Laniel, N. Ho, R. Vallee, "Nonlinear-refractive-index measurement in ${\hbox {As}}_{2}{\hbox {S}}_{3}$ channel waveguides by asymmetric self-phase modulation," JOSA B 22, 437-445 (2005).
  11. J.-F. Viens, C. Meneghini, A. Villeneuve, T. V. Galstian, E. J. Knystautas, M. A. Duguay, K. A. Richardson, T. Cardinal, "Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses," J. Lightw. Technol. 17, 1184-1191 (1999).
  12. W. J. Pan, D. Furniss, H. Rowe, C. A. Miller, A. Loni, P. Sewell, T. M. Benson, A. B. Seddon, "Fine embossing of chalcogenide glasses: First time submicron definition of surface embossed features," J. Non-Crystalline Solids 353, 1302-1306 (2007).
  13. H. Mizuno, O. Sugihara, T. Kaino, N. Okamoto, M. Hosino, "Low-loss polymeric optical waveguides with large cores fabricated by hot embossing," Opt. Lett. 28, 2378-2380 (2003).
  14. S. J. Madden, D.-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta'eed, M. D. Pelusi, B. J. Eggleton, "Long, low loss etched ${\hbox {As}}_{2}{\hbox {S}}_{3}$ chalcogenide waveguides for all-optical signal regeneration," Opt. Exp. 15, 14414-14421 (2007).
  15. S. Spalter, H. Y. Hwang, J. Zimmermann, G. Lenz, T. Katsufuji, S.-W. Cheong, R. E. Slusher, "Strong self-phase modulation in planar chalcogenide glass waveguides," Opt. Lett. 27, 363-365 (2002).
  16. N. Ho, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, N. C. Anheier, Jr"Single-mode low-loss chalcogenide glass waveguides for the mid-infrared," Opt. Lett. 31, 1860-1862 (2006).
  17. A. K. Mairaj, P. Hua, H. N. Rutt, D. W. Hewak, "Fabrication and characterization of continuous wave direct UV written channel waveguides in chalcogenide (Ga:La:S) glass," J. Lightw. Technol. 20, 1578-1583 (2002).
  18. O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, J. L. Bruneel, "Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses," Opt. Mater. 17, 379-386 (2001).
  19. M. Hughes, W. Yang, D. Hewak, "Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass," Appl. Phys. Lett. 90, (2007) 131113.
  20. A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, "Direct femtosecond laser writing of waveguides in ${\hbox {As}}_{2}{\hbox {S}}_{3}$ thin films," Opt. Lett. 29, 748-750 (2004).
  21. N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, A. K. Kar, "Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide," Opt. Exp. 15, 15776-15781 (2007).
  22. S. K. Turitsyn, V. K. Mezentsev, M. Dubov, A. M. Rubenchik, M. P. Fedoruk, E. V. Podivilov, "Sub-critical regime of femtosecond inscription," Opt. Exp. 15, 14750-14764 (2007).
  23. L. V. Keldysh, Sov. Phys. JETP (, 1965) pp. 1307-1316.
  24. K. D. Moll, A. L. Gaeta, "Role of dispersion in multiple—Collapse dynamics," Opt. Lett. 29, 995-997 (2004).
  25. A. P. Aleksandrov, A. A. Babin, A. M. Kiselev, D. I. Kulagin, V. V. Lozhkarev, A. N. Stepanov, "Formation of microstructures in ${\hbox {As}}_{2}{\hbox {S}}_{3}$ by a femtosecond laser pulse train," Quantum Electron. 31, 25-31 (2001).
  26. E. A. Romanova, A. I. Konyukhov, "Study of irradiation conditions and thermodynamics of optical glass in the problem of materials modification by femtosecond laser pulses," Opt. Spectroscopy 104, 781-790 (2008).
  27. J. S. Petrovic, V. Mezentsev, H. Schmitz, I. Bennion, "Model of the femtosecond laser inscription by a single pulse," Opt. Quantum Electron. 39, 939-946 (2007).
  28. I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, "Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses," J. Appl. Phys. 101, (2007) 043506.
  29. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, P. B. Corkum, "High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations," J. Appl. Phys. 98, (2005) 013517.
  30. L. Hallo, A. Bourgeade, V. T. Tikhonchuk, C. Mezel, J. Breil, "Model and numerical simulations of the propagation and absorption of a short laser pulse in a transparent dielectric material: Blast-wave launch and cavity formation," Phys. Rev. B 76, (2007) 024101.
  31. A. Vogel, J. Noack, G. Huttman, G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys.B 81, 1015-1047 (2005).
  32. W. P. Huang, C. L. Xu, "A wide-angle vector beam propagation method," IEEE Photon. Technol. Lett. 4, 1118-1120 (1992).
  33. Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, C. R. Thompson, "Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses," IEEE J. Quantum Electron. 33, 127-137 (1997).
  34. P. Audebert, P. Daguzan, A. D. Santos, J. C. Gauthier, J. P. Geindre, S. Guizard, G. Hamoniaux, K. Krastev, P. Martin, G. Petite, A. Antonelli, "Space-time observation of an electron gas in ${\hbox {SiO}}_{2}$," Phys. Rev. Lett. 73, 1990-1993 (1994).
  35. W. Liu, S. Petit, A. Becker, N. Akozbek, C. M. Bowden, S. L. Chin, "Intensity clamping of a femtosecond laser pulse in condensed matter," Opt. Commun. 202, 189-197 (2002).
  36. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, P. R. Herman, "Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides," Opt. Exp. 16, 9443-9458 (2008).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited