## Optimization of InP APDs for High-Speed Lightwave Systems

Journal of Lightwave Technology, Vol. 27, Issue 15, pp. 3294-3302 (2009)

Acrobat PDF (533 KB)

### Abstract

Calculations based on a rigorous analytical model are carried out to optimize the width of the indium phosphide avalanche region in high-speed direct-detection avalanche photodiode-based optical receivers. The model includes the effects of intersymbol interference (ISI), tunneling current, avalanche noise, and its correlation with the stochastic avalanche duration, as well as dead space. A minimum receiver sensitivity of $-$28 dBm is predicted at an optimal width of 0.18 $\mu{\hbox {m}}$ and an optimal gain of approximately 13, for a 10 Gb/s communication system, assuming a Johnson noise level of 629 noise electrons per bit. The interplay among the factors controlling the optimum sensitivity is confirmed. Results show that for a given transmission speed, as the device width decreases below an optimum value, increased tunneling current outweighs avalanche noise reduction due to dead space, resulting in an increase in receiver sensitivity. As the device width increases above its optimum value, the receiver sensitivity increases as device bandwidth decreases, causing ISI to dominate avalanche noise and tunneling current shot noise.

© 2009 IEEE

**Citation**

Daniel S. G. Ong, Jo Shien Ng, Majeed M. Hayat, Peng Sun, and John P. R. David, "Optimization of InP APDs for High-Speed Lightwave Systems," J. Lightwave Technol. **27**, 3294-3302 (2009)

http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-27-15-3294

Sort: Year | Journal | Reset

### References

- J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Y. Guo, S. L. Wang, X. G. Zheng, X. W. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, N. Tscherptner, "Recent advances in avalanche photodiodes," IEEE J. Sel. Topics Quantum Electron. 10, 777-787 (2004).
- S. D. Personick, "Receiver design for digital fiber-optic communication systems, Parts I and II," Bell Syst. Tech. J. 52, 843-886 (1973).
- K. F. Li, D. S. Ong, J. P. R. David, G. J. Rees, R. C. Tozer, P. N. Robson, R. Grey, "Avalanche multiplication noise characteristics in thin GaAs ${\rm p}^{+}-{\rm i-n}^{+}$ diodes," IEEE Trans. Electron Devices 45, 2102-2107 (1998).
- M. A. Saleh, M. M. Hayat, P. Sotirelis, A. L. Holmes, J. C. Campbell, B. E. A. Saleh, M. C. Teich, "Impact-ionization and noise characteristics of thin III-V avalanche photodiodes," IEEE Trans. Electron Devices 48, 2722-2731 (2001).
- C. H. Tan, J. P. R. David, S. A. Plimmer, G. J. Rees, R. C. Tozer, R. Grey, "Low multiplication noise thin ${\hbox {Al}}_{0.6}{\hbox {Ga}}_{0.4}{\hbox {As}}$ avalanche photodiodes," IEEE Trans. Electron Devices 48, 1310-1317 (2001).
- S. R. Forrest, M. DiDomenico, Jr., R. G. Smith, H. J. Stocker, "Evidence of tunneling in reverse-bias III-V photodetector diodes," Appl. Phys. Lett. 36, 580-582 (1980).
- M. M. Hayat, B. E. A. Saleh, J. A. Gubner, "Bit-error rates for optical receivers using avalanche photodiodes with dead space," IEEE Trans. Commun. 43, 99-107 (1995).
- C. Groves, J. David, "Effects of ionization velocity and dead space on avalanche photodiode bit error rate," IEEE Trans. Commun. 55, 2152-2158 (2007).
- P. Sun, M. M. Hayat, B. E. A. Saleh, M. C. Teich, "Statistical correlation of gain and buildup time in APD and its effects on receiver performance," J. Lightw. Technol. 24, 755-768 (2006).
- P. Sun, M. M. Hayat, A. K. Das, "Bit error rates for ultrafast APD based optical receivers: Exact and large deviation based asymptotic approaches," IEEE Trans. Commun. .
- K. B. Letaief, J. S. Sadowsky, "Computing bit-error probabilities for avalanche photodiode receivers by large deviations theory," IEEE Trans. Inf. Theory 38, 1162-1169 (1992).
- B. Choi, M. M. Hayat, "Computation of bit-error probabilities for optical receivers using thin avalanche photodiodes," IEEE Comm. Lett. 10, 56-58 (2006).
- L. J. J. Tan, J. S. Ng, C. H. Tan, J. P. R. David, "Avalanche noise characteristics in sub-micron InP diodes," IEEE J. Quantum Electron. 44, 378-382 (2008).
- G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 1997) pp. 172.
- S. R. Forrest, R. F. Leheny, R. E. Nahory, M. A. Pollack, "${\rm In}_{0.53}{\hbox {Ga}}_{0.47}{\hbox {As}}$ photodiodes with dark current limited by generation-recombination and tunnelling," Appl. Phys. Lett. 37, 322-325 (1980).
- J. S. Ng, C. H. Tan, B. K. Ng, P. J. Hambleton, J. P. R. David, G. J. Rees, A. H. You, D. S. Ong, "Effect of dead space on avalanche speed," IEEE Trans. Electron Devices 49, 544-549 (2002).
- A. Maxim, "A $54\ {\hbox {dB}}\Omega+42\ {\hbox {dB}}$ 10 Gb/s SiGe transimpedance-limiting amplifier using bootstrap photodiode capacitance neutralization and vertical threshold adjustment," IEEE J. Solid-State Circuits 42, 1851-1864 (2007).
- C.-F. Liao, S.-I. Liu, "40 Gb/s transimpedance-AGC amplifier and CDR circuit for broadband data receivers in 90 nm CMOS," IEEE J. Solid-State Circuits 43, 642-655 (2008).
- H. Fukuyama, K. Sano, K. Murata, H. Kitabayashi, Y. Yamane, T. Enoki, H. Sugahara, "Photoreceiver module using an InP HEMT transimpedance amplifier for over 40 Gb/s," IEEE J. Solid-State Circuits 39, 1690-1696 (2004).
- J.-D. Jin, S. S. H. Hsu, "A 40-Gb/s transimpedance amplifier in 0.18- $\mu{\hbox {m}}$ CMOS technology," IEEE J. Solid-State Circuits 43, 1449-1457 (2008).
- J. S. Weiner, J. S. Lee, A. Leven, Y. Baeyens, V. Houtsma, G. Georgiou, Y. Yang, J. Frackoviak, A. Tate, R. Reyes, R. F. Kopf, W.-J. Sung, N. G. Weimann, Y.-K. Chen, "An InGaAs-InP HBT differential transimpedance amplifier with 47-GHz bandwidth," IEEE J. Solid-State Circuits 39, 1720-1723 (2004).
- L. W. Cook, G. E. Bulman, G. E. Stillman, "Electron and hole impact ionization coefficients in InP determined by photomultiplication measurements," Appl. Phys. Lett. 40, 589-591 (1982).

## Cited By |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.