Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 27,
  • Issue 16,
  • pp. 3358-3369
  • (2009)

A Combined Regular-Logarithmic Perturbation Method for Signal-Noise Interaction inAmplified Optical Systems

Not Accessible

Your library or personal account may give you access

Abstract

We present a novel perturbation method for the nonlinear Schrödinger equation (NLSE) that governs the propagation of light in optical fibers. We apply this method to study signal-noise interactions in amplified multispan fiber-optic systems. Being based on a combination of the regular perturbation (RP) and logarithmic perturbation, the method is especially suitable for modeling the simultaneous presence of nonlinear and dispersive effects. Even after linearization, it retains the contribution of the quadratic perturbation terms of the NLSE, thereby achieving higher accuracy than an RP with comparable complexity. We revise parametric gain and nonlinear phase-noise effects under the new theory. We finally consider several examples and evaluate the probability density function of the optical or postdetection signal and the bit-error rate of an NRZ–OOK system. All of the results are compared with other models and with multicanonical Monte Carlo simulations.

© 2009 IEEE

PDF Article
More Like This
Signal-noise interaction in nonlinear optical fibers: a hydrodynamic approach

Luigi Barletti and Marco Secondini
Opt. Express 23(21) 27419-27433 (2015)

Effective simulation method for parametric signal-noise interaction in transmission fibers

Evgeny Vanin, Gunnar Jacobsen, and Anders Berntson
Opt. Lett. 31(15) 2272-2274 (2006)

Modeling nonlinear phase noise in differentially phase-modulated optical communication systems

Leonardo D. Coelho, Lutz Molle, Dirk Gross, Norbert Hanik, Ronald Freund, Christoph Caspar, Ernst-Dieter Schmidt, and Bernhard Spinnler
Opt. Express 17(5) 3226-3241 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved