OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 27, Iss. 16 — Aug. 15, 2009
  • pp: 3641–3653

Multi-Level, Multi-Dimensional Coding for High-Speed and High-Spectral-Efficiency Optical Transmission

Xiang Zhou and Jianjun Yu

Journal of Lightwave Technology, Vol. 27, Issue 16, pp. 3641-3653 (2009)


View Full Text Article

Acrobat PDF (1904 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We review and study several single carrier based multi-level and multi-dimensional coding (ML-MDC) technologies recently demonstrated for spectrally-efficient 100-Gb/s transmission. These include 16-ary PDM-QPSK, 64-ary PDM-8PSK, 64-ary PDM-8QAM as well as 256-ary PDM-16 QAM. We show that high-speed QPSK, 8PSK, 8QAM, and 16QAM can all be generated using commercially available optical modulators using only binary electrical drive signals through novel synthesis methods, and that all of these modulation formats can be detected using a universal receiver front-end and digital coherent detection. We show that the constant modulus algorithm (CMA), which is highly effective for blind polarization recovery of PDM-QPSK and PDM-8PSK signals, is much less effective for PDM-8QAM and PDM-16 QAM. We then present a recently proposed, cascaded multi-modulus algorithm for these cases. In addition to the DSP algorithms used for constellation recovery, we also describe a DSP algorithm to improve the performance of a coherent receiver using single-ended photo-detection. The system impact of ASE noise, laser phase noise, narrowband optical filtering and fiber nonlinear effects has been investigated. For high-level modulation formats using full receiver-side digital compensation, it is shown that the requirement on LO phase noise is more stringent than the signal laser. We also show that RZ pulse shaping significantly improves filter- and fiber-nonlinear tolerance. Finally we present three high-spectral-efficiency and high-speed DWDM transmission experiments implementing these ML-MDC technologies.

© 2009 IEEE

Citation
Xiang Zhou and Jianjun Yu, "Multi-Level, Multi-Dimensional Coding for High-Speed and High-Spectral-Efficiency Optical Transmission," J. Lightwave Technol. 27, 3641-3653 (2009)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-27-16-3641

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited