OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 27, Iss. 17 — Sep. 1, 2009
  • pp: 3783–3789

Modeling of the Propagation Loss and Backscattering in Air-Core Photonic-Bandgap Fibers

Vinayak Dangui, Michel J. F. Digonnet, and Gordon S. Kino

Journal of Lightwave Technology, Vol. 27, Issue 17, pp. 3783-3789 (2009)


View Full Text Article

Acrobat PDF (758 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We report numerical simulations based on normal coupled mode theory of the fundamental-mode loss and backscattering induced in air-core fibers by random longitudinal perturbations of the core diameter. To quantitatively explain the measured loss of $\sim$24 dB/km at 1550 nm of air-core fiber HC-1550-02 from Crystal Fibre, these simulations predict that the autocorrelation function of the perturbation is close to an exponential and characterized by a ratio $D/\sigma^{2}$ of $\sim 2.36\times 10^{13}\ {\rm m}^{-1}$, where $D$ is the characteristic length and $\sigma$ the amplitude of the perturbation. This analysis yields a characteristic perturbation length for this fiber in the range of $\sim$1 to $\sim$30 cm. That this is much shorter than in a conventional fiber is consistent with the slower speeds at which air-core fibers are pulled, which reduces the length of the fiber perturbations. The same exponential perturbation and $D/\sigma^{2}$ ratio also predict that the backscattering coefficient for the fundamental mode of this fiber is $1.5\times 10^{-9}\ {\rm mm}^{-1}$, which agrees well with a measured value. When applied to a 19-cell air-core fiber from the same manufacturer (HC19-1550-01) the same perturbation predicts a loss of 4 dB/km, which agrees with the measured range of 1.2 to $\sim$10 dB/km. These independent agreements between modeled and measured loss and backscattering coefficients and the reasonable predicted range of perturbation lengths confirm that core dimension variations are the dominant mechanism behind the loss and backscattering of current air-core fibers.

© 2009 IEEE

Citation
Vinayak Dangui, Michel J. F. Digonnet, and Gordon S. Kino, "Modeling of the Propagation Loss and Backscattering in Air-Core Photonic-Bandgap Fibers," J. Lightwave Technol. 27, 3783-3789 (2009)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-27-17-3783


Sort:  Year  |  Journal  |  Reset

References

  1. J. Broeng, D. Mogilevstev, S. E. Barkou, A. Bjarklev, "Photonic crystal fibers: A new class of optical waveguides," Optical Fiber Technology 5, 305-330 (1999).
  2. J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, J. P. Sandro, "Photonic crystals as optical fibers-physics and applications," Optical Materials 11, 143-151 (1999).
  3. R. S. Windeler, J. L. Wagener, D. J. Giovanni, "Silica-air microstructured fibers: Properties and applications," Optical Fiber Communications Conference (1999).
  4. V. Dangui, H. K. Kim, M. J. F. Digonnet, G. S. Kino, "Phase sensitivity to temperature of the fundamental mode in air-guiding photonic-bandgap fibers," Opt. Express 13, 6669-6684 (2005).
  5. T. P. Hansen, K. P. Hansen, J. Broeng, "All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber," Opt. Express 11, 2832-2837 (2003).
  6. C. Peucheret, B. Zsigri, T. P. Hansen, P. Jeppesen, "10 Gbit/s transmission over air-guiding photonic bandgap fibre at 1550 nm," Electronics Letters 41, 27-29 (2005).
  7. P. J. Roberts, "Ultimate low-loss of hollow-core photonic crystal fibres," Opt. Express 13, 236-244 (2005).
  8. V. Dangui, M. J. F. Digonnet, G. S. Kino, “Modeling and measurement of reduced backscattering noise in laser-driven fiber-optic gyroscopes,” to be published.
  9. See data sheet on the website ofCrystal Fibre A/S www.crystal-fibre.com/products/airguide.shtm.
  10. Private Communication Crystal Fibre A/S.
  11. D. Marcuse, Theory of Dielectric Waveguides (Academic Press, 1974).
  12. V. Dangui, M. J. F. Digonnet, G. S. Kino, "A fast and accurate numerical tool to model the modal properties of photonic-bandgap fibers," Opt. Express 14, 2979-2993 (2006).
  13. Corning http://www.corning.com.
  14. J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, K. W. Koch, "Surface modes in air-core photonic band-gap fibers," Opt. Express 12, 1485-1496 (2004).
  15. D. C. Allan, N. F. Borrelli, M. T. Gallagher, D. Müller, C. M. Smith, N. Venkataraman, J. A. West, P. Zhang, K. W. Koch, "Surface modes and loss in air-core photonic band-gap fibers," Proc. of SPIE (2003) pp. 161-174.
  16. K. Saitoh, N. A. Mortensen, M. Koshiba, "Air-core photonic band-gap fibers: The impact of surface modes," Opt. Express 12, 394-400 (2004).
  17. H. K. Kim, J. Shin, S. H. Fan, M. J. F. Digonnet, G. S. Kino, "Designing air-core photonic-bandgap fibers free of surface modes," IEEE J. Quant. Electron. 40, 551-556 (2004).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited