OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 27, Iss. 17 — Sep. 1, 2009
  • pp: 3812–3819

Calculation of Fully Anisotropic Liquid Crystal Waveguide Modes

Jeroen Beeckman, Richard James, F. Aníbal Fernández, Wout De Cort, Pieter J. M. Vanbrabant, and Kristiaan Neyts

Journal of Lightwave Technology, Vol. 27, Issue 17, pp. 3812-3819 (2009)

View Full Text Article

Acrobat PDF (975 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


The accurate analysis of optical waveguides is an important issue when designing devices for optical communication. Waveguides combined with liquid crystals have great potential because they allow waveguide tuning over a wide range using low voltages. In this paper, we present calculations that combine an advanced algorithm for calculating liquid crystal behavior and a finite-element mode solver that is able to incorporate the full anisotropy of the materials. Calculation examples demonstrate the validity of our program.

© 2009 IEEE

Jeroen Beeckman, Richard James, F. Aníbal Fernández, Wout De Cort, Pieter J. M. Vanbrabant, and Kristiaan Neyts, "Calculation of Fully Anisotropic Liquid Crystal Waveguide Modes," J. Lightwave Technol. 27, 3812-3819 (2009)

Sort:  Year  |  Journal  |  Reset


  1. N. Clark, M. Handshy, "Surface-stabilized ferroelectric liquid-crystal electro-optic waveguide switch," Appl. Phys. Lett. 57, 1852-1854 (1990).
  2. A. d'Alessandro, R. Asquini, "Liquid crystal devices for photonic switching applications: State of the art and future developments," Mol. Cryst. Liq. Cryst. 398, 207-221 (2003).
  3. H. Desmet, W. Bogaerts, A. Adamski, J. Beeckman, K. Neyts, R. Baets, "Silicon-on-insulator optical waveguides with liquid crystal cladding for switching and tuning," Proc. ECOC (2003) pp. 430-431.
  4. L. Sirleto, G. Coppola, G. Breglio, "Optical multimode interference router based on a liquid crystal waveguide," J. Opt. A: Pure Appl. Opt. 5, S298-S304 (2003).
  5. C. Gizzi, R. Asquini, A. d'Alessandro, "A polarization independent liquid crystal assisted vertical coupler switch," Mol. Cryst. Liq. Cryst. 421, 95-105 (2004).
  6. A. d'Alessandro, B. Bellini, D. Donisi, R. Beccherelli, R. Asquini, "Nematic liquid crystal optical channel waveguides on silicon," IEEE J. Quantum Electron. 42, 1084-1090 (2006).
  7. A. Fratalocchi, R. Asquini, G. Assanto, "Integrated electro-optic switch in liquid crystals," Opt. Exp. 13, 32-36 (2005).
  8. S. V. Serak, N. V. Tabiryan, M. Peccianti, G. Assanto, "Spatial soliton all-optical logic gates," IEEE Photon. Technol. Lett. 18, 1287-1289 (2006).
  9. J. Beeckman, K. Neyts, M. Haelterman, "Patterned electrode steering of nematicons," J. Opt. A: Pure Appl. Opt. 8, 214-220 (2006).
  10. J. Henninot, M. Debailleul, R. Asquini, A. d'Alessandro, M. Warenghem, "Self-waveguiding in an isotropic channel induced in dye doped nematic liquid crystal and a bent self-waveguide," J. Opt. A: Pure Appl. Opt. 6, 315-323 (2004).
  11. R. James, E. Willman, F. A. Fernández, S. E. Day, "Finite-element modeling of liquid-crystal hydrodynamics with a variable degree of order," IEEE Trans. Electron Dev. 53, 1575-1582 (2006).
  12. P. G. de Gennes, J. Prost, The Physics of Liquid Crystals (Oxford Univ. Press, 1995).
  13. R. Asquini, A. d'Alessandro, "Bpm analysis of an integrated optical switch using polymeric optical waveguides and ssflc at 1.55 $\mu{\hbox {m}}$," Mol. Cryst. Liq. Cryst 375, 243-247 (2002).
  14. G. Ntogari, D. Tsipouridou, E. Kriezis, "A numerical study of optical switches and modulators based on ferroelectric liquid crystals," J. Opt. A: Pure Appl. Opt. 7, 82-87 (2005).
  15. E. Gros, L. Dupont, "Beam deflector using double-refraction in ferroelectric liquid crystal waveguides," Ferroelectrics 246, 219-226 (2000).
  16. J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, M. Haelterman, "Simulation of 2-D lateral light propagation in nematic-liquid-crystal cells with tilted molecules and nonlinear reorientational effect," Opt. Quant. Electron. 35, 95-106 (2005).
  17. J. Beeckman, K. Neyts, X. Hutsebaut, M. Haelterman, "Observation of out-coupling of a nematicon," Opto-Electron. Rev. 14, 263-267 (2006) 12.
  18. S. Selleri, L. Vincetti, A. Cucinotta, M. Zoboli, "Complex FEM modal solver of optical waveguides with PML boundary conditions," Opt. Quant. Electron. 33, 359-371 (2001).
  19. A. Fallahkhair, S. Li, T. Murphy, "Vector finite difference modesolver for anisotropic dielectric waveguides," J. Lightw. Technol. 26, 1423-1431 (2008).
  20. L. Valor, J. Zapata, "An efficient finite element formulation to analyze waveguides with lossy inhomogeneous bi-anisotropic materials," IEEE Trans. Microw. Theory Tech. 44, 291-296 (1996).
  21. S. Hsu, M. Chen, H. Chang, "Investigation of band structures for 2D non-diagonal anisotropic photonic crystals using a finite element method based eigenvalue algorithm," Opt. Exp. 15, 5416-5430 (2007).
  22. V. Schulz, "Adjoint high-order vectorial finite elements for nonsymmetric transversally anisotropic waveguides," IEEE Trans. Microw. Theory Tech. 51, 1086-1095 (2003).
  23. F. Bertazzi, O. Peverini, M. Goano, G. Ghione, R. Orta, R. Tascone, "A fast reduced-order model for the full-wave fem analysis of lossy inhomogeneous anisotropic waveguides," IEEE Trans. Microw. Theory Tech. 50, 2108-2114 (2002).
  24. P. Savi, I. Gheorma, R. Graglia, "Full-wave high-order FEM model for lossy anisotropic waveguides," IEEE Trans. Microw. Theory Tech. 50, 495-500 (2002).
  25. Y. Lu, F. A. Fernandez, "An efficient finite element solution of inhomogeneous anisotropic and lossy dielectric waveguides," IEEE Trans. Microw. Theory Tech. 41, 1215-1223 (1993).
  26. J. A. M. Svedin, "Propagation analysis of chirowaveguides using the finite element method," IEEE Trans. Microw. Theory Tech. 38, 1488-1496 (1990).
  27. J. A. M. Svedin, "A numerically efficient finite-element formulation for the general waveguide problem without spurious modes," IEEE Trans. Microw. Theory Tech. 37, 1708-1715 (1989).
  28. T. Angkaew, M. Matsuhara, N. Kumagai, "Finite-element analysis of waveguide modes: A novel approach that eliminates spurious modes," IEEE Trans. Microw. Theory Tech. MTT-35, 117-123 (1987).
  29. L. Valor, J. Zapata, "Efficient finite element analysis of waveguides with lossy inhomogeneous anisotropic materials characterized by arbitrary permittivity and permeability tensors," IEEE Trans. Microw. Theory Tech. 43, 2452-2459 (1995).
  30. G. Tartarini, H. Renner, "Efficient finite-element analysis of tilted open anisotropic optical channel waveguides," IEEE Trans. Microw. Theory Tech. 9, 389-391 (1999).
  31. L. Nuno, J. Balbastre, H. Castane, "Analysis of general lossy inhomogeneous and anisotropic waveguides by the finite-element method (FEM) using edge elements," IEEE Trans. Microw. Theory Tech. 45, 446-449 (1997).
  32. S. Hsu, H. Chang, "Full-vectorial finite element method based eigenvalue algorithm for the analysis of 2D photonic crystals with arbitrary 3d anisotropy," Opt. Exp. 15, 15 797-15 811 (2007).
  33. J. Jin, The Finite Element Method in Electromagnetics (Wiley, 2002).
  34. M. Koshiba, Y. Tsuji, "Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems," J. Lightw. Technol. 18, 737-743 (2000).
  35. F. Tisseur, K. Meerbergen, "The quadratic eigenvalue problem," SIAM Rev. 43, 235-286 (2001).
  36. A. F. Peterson, "Vector finite element formulation for scattering from two-dimensional heterogeneous bodies," IEEE Trans. Antenna Propag. 43, 357-365 (1994).
  37. V. Chigrinov, V. Kozenkov, H. Kwok, Photoalignment of Liquid Crystalline Materials (Wiley, 2008).
  38. H. Desmet, K. Neyts, R. Baets, "Modeling nematic liquid crystals in the neighborhood of edges," J. Appl. Phys. 98, 123517 (2005).
  39. P. Yeh, C. Gu, Optics of Liquid Crystal Displays (Wiley-Interscience, 1999).
  40. Y. Satomura, M. Matsuhara, N. Kumagai, "Analysis of electromagnetic-wave modes in anisotropic slab waveguide," IEEE Trans. Microw. Theory Tech. MTT-22, 86-92 (1974).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited