Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 27,
  • Issue 17,
  • pp. 3880-3887
  • (2009)

Generation of Self-Similar Parabolic Pulses by Designing Normal Dispersion Decreasing Fiber Amplifier as Well as Its Staircase Substitutes

Not Accessible

Your library or personal account may give you access

Abstract

Generation of self-similar parabolic pulse is analytically and numerically demonstrated by designing parabolic index normal dispersion decreasing fiber (NDDF) amplifiers. The pulse transmission is extensively studied for NDDFs in presence of physical gain as well as virtual gain induced by two different dispersion profiles corresponding to two different physical gain coefficients. Here, we introduce the virtual gain arising from the unavoidable spatial nonlinear variation, which helps to obtain the self-similar parabolic pulses at smaller optimum length in comparison to NDDF with constant nonlinearity. The output power profiles resemble with a perfect parabolic shape giving rise to self-similar pulses with very small misfit parameters. Pulse propagation in presence of spatial gain variation is also studied. To avoid fabrication difficulties, we propose equivalent staircase dispersion profiles consisting of a number of constant dispersion fibers (CDFs), which are simple to manufacture and show performances excellently close to that of the proposed NDDF.

© 2009 IEEE

PDF Article
More Like This
Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers

V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley
J. Opt. Soc. Am. B 19(3) 461-469 (2002)

Theory of parabolic pulse propagation in nonlinear dispersion-decreasing optical fiber amplifiers

Stefan Wabnitz and Christophe Finot
J. Opt. Soc. Am. B 25(4) 614-621 (2008)

Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion

Toshihiko Hirooka and Masataka Nakazawa
Opt. Lett. 29(5) 498-500 (2004)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved