OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 27, Iss. 17 — Sep. 1, 2009
  • pp: 3940–3947

An Endlessly Single-Mode Photonic Crystal Fiber With Low Chromatic Dispersion, and Bend and Rotational Insensitivity

Emmanuel K. Akowuah, Huseyin Ademgil, Shyqyri Haxha, and Fathi AbdelMalek

Journal of Lightwave Technology, Vol. 27, Issue 17, pp. 3940-3947 (2009)


View Full Text Article

Acrobat PDF (1068 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

A single-mode photonic crystal fiber (PCF) with low chromatic dispersion, low bend, and rotational sensitivity is presented. The transverse electric field vector distributions of the fundamental, higher order and fundamental space filling modes, their effective indices, chromatic dispersion, confinement, bending and rotational losses are reported using full-vector finite-element method (FEM). In addition, the endlessly single mode behavior is demonstrated by employing the ${V}$ parameter of the proposed PCF. It has also been shown that the proposed PCF design is insensitive to bends and rotations.

© 2009 IEEE

Citation
Emmanuel K. Akowuah, Huseyin Ademgil, Shyqyri Haxha, and Fathi AbdelMalek, "An Endlessly Single-Mode Photonic Crystal Fiber With Low Chromatic Dispersion, and Bend and Rotational Insensitivity," J. Lightwave Technol. 27, 3940-3947 (2009)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-27-17-3940


Sort:  Year  |  Journal  |  Reset

References

  1. F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, D. Felbacq, Fundamentals of Photonic Crystal Fibers (Imperial College Press, 2005).
  2. A. Ferrando, E. Silvestre, J. J. Miret, P. Andrés, M. V. Andrés, "Vector description of higher-order modes in photonic crystal fibers," J. Opt. Soc. Amer. A 17, 1333-1340 (2000).
  3. T. M. Monro, D. J. Richardson, N. G. R. Broderick, P. J. Bennett, "Holey optical fibers: An efficient modal model," J. Lightw. Technol. 17, 1093-1102 (1999).
  4. Y. Tsuchida, K. Saitoh, M. Koshiba, "Design of single-moded holey fibers with large-mode-area and low bending losses: The significance of the ring-core region," Opt. Exp. 15, 1794-180 (2007).
  5. T. A. Birks, J. C. Knight, P. S. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
  6. P. S. J. Russell, T. A. Birks, F. D. Lloyd-Lucas, Confined Electrons and Photons: New Physics and Applications (Plenum, 1995).
  7. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
  8. J. C. Knight, J. Broeng, T. A. Birks, P. S. J. Russell, "Photonic band gap guidance in optical fibers," Science 282, 1476-1478 (1998).
  9. J. Broeng, S. E. Barkou, T. Sondergaard, A. Bjaklev, "Analysis of air-guiding photonic bandgap fibers," Opt. Lett. 25, 96-98 (2000).
  10. T. M. Monro, P. J. Bennett, N. G. R. Broderick, D. J. Richardson, "Holey fibers with random cladding distributions," Opt. Lett. 25, 206-208 (2000).
  11. M. J. Steel, R. M. Osgood, "Polarization and dispersive properties of elliptical–hole photonic crystal fibers," J. Lightw. Technol. 19, 495-503 (2001).
  12. D. Mogilevtsev, T. A. Birks, P. S. J. Russell, "Group-velocity dispersion in photonic crystal fibers," Opt. Lett. 23, 1662-1664 (1998).
  13. H. P. Uranus, H. J. W. M. Hoekstra, E. van Groesen, "Modes of an endlessly single-mode photonic crystal fiber: A finite element investigation," Proc. Symp. IEEE/LEOS Benelux Chapter (2004) pp. 311-314.
  14. J. C. Knight, T. A. Birks, P. S. J. Russell, D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
  15. E. Silverstre, P. S. J. Russell, T. A. Birks, J. C. Knight, "Analysis and design of an endlessly single-mode finned dielectric waveguide," J. Opt. Soc. Amer. A 15, 3067-3075 (1998).
  16. A. Ferrando, E. Silvestre, J. J. Miret, P. Andrés, M. V. Andrés, "Full-vector analysis of a realistic photonic crystal fiber," Opt. Lett. 24, 276-278 (1999).
  17. S. Haxha, H. Ademgil, "Novel design of photonic crystal fibers with low confinement losses, Nearly zero ultra-flattened chromatic dispersion, Negative chromatic dispersion and improved effective mode area," J. Opt. Comm. 281, 278-286 (2008).
  18. A. Kudlinski, B. A. Cumberland, J. C. Travers, G. Bouwmans, Y. Quiquempois, A. Mussot, "CW supercontinuum generation in photonic crystal fibres with two zero-dispersion wavelength," AIP Conf. Proc. (2008) pp. 15-18.
  19. B. A. Cumberland, J. C. Travers, S. V. Popov, J. R. Taylor, "29 W High power CW supercontinuum source," Optics Express 16, 5954-5962 (2008).
  20. K. Saitoh, M. Koshiba, T. Hasegawa, E. Sasaoka, "Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion," Opt. Exp. 11, 843-852 (2003).
  21. K. M. Gundu, M. Kolesik, J. V. Moloney, K. S. Lee, "Ultra-flattened-dispersion selectively liquid-filled photonic crystal fibers," Opt. Express 14, 6870-6878 (2006).
  22. E. C. Magi, P. Steinvurzel, B. J. Eggleton, "Transverse characterization of tapered photonic crystal fibers," Appl. Phys. 96, 3976-3982 (2004).
  23. Y. Lizé, E. Mägi, V. Ta'eed, J. Bolger, P. Steinvurzel, B. Eggleton, "Microstructured optical fiber photonic wires with subwavelength core diameter," Opt. Exp. 12, 3209-3217 (2004).
  24. A. M. Zheltikov, "Nonlinear optics of microstructure fibers," Phys. Usp. 47, 69 (2004).
  25. J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003).
  26. H. Ademgil, S. Haxha, "Highly birefringent photonic crystal fibers with ultra-low chromatic dispersion and low confinement losses," J. Lightw. Technol. 26, 441-448 (2008).
  27. N. A. Mortensen, J. R. Folkenberg, "Low-loss criterion and effective area considerations for photonic crystal fibers," J. Opt. A: Pure Appl. Opt. 5, 163-167 (2003).
  28. N. A. Mortensen, "Effective area of photonic crystal fibers," Opt. Exp. 10, 341-348 (2002).
  29. B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, G. L. Burdge, "Cladding-mode-resonances in air-silica microstructure optical fibers," J. Lightw. Technol. 18, 1084-1100 (2000).
  30. T. Sørensen, J. Broeng, A. Bjarklev, T. P. Hansen, E. Knudsen, S. E. B. Libori, H. R. Simonsen, J. R. Jensen, "Spectral macro-bending loss considerations for photonic crystal fibres," IEE Proc.-Optoelectron. 149, 206-210 (2002).
  31. Y. Tsuchida, K. Saitoh, M. Koshiba, "Design and characterization of single-mode holey fibers with low bending losses," Opt. Exp. 13, 4770-4779 (2005).
  32. J. Olszewski, M. Szpulak, W. Urbanczyk, "Effect of coupling between fundamental and cladding modes on bending losses in photonic crystal fibers," Opt. Exp. 13, 6015-6022 (2005).
  33. B. J. Ainslie, C. R. Day, "A review of single-mode fibers with modified dispersion characteristics," IEEE J. Lightwave Technol. 4, 967-979 (1986).
  34. N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, K. P. Hansen, "Modal cut – off and the ${V}$- parameter in photonic crystal fibers," Opt. Lett. 28, 1879 (2003).
  35. B. T. Kuhlmey, R. C. McPhedran, C. M. de Sterke, "Modal cutoff in microstructured optical fibers," Opt. Lett. 27, 1684-1686 (2002).
  36. F. Brechet, J. Marcou, D. Pagnoux, P. Roy, "Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite-element method," Opt. Fiber Technol. 6, 181-191 (2000).
  37. G. P. Agrawal, Nonlinear Fiber Opt. (Academic, 2001).
  38. J. K. Ranka, R. S. Windeler, A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited