OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 27, Iss. 17 — Sep. 1, 2009
  • pp: 3948–3958

High-Capacity Time-Domain Wavelength Interleaved Networks

Tony K. C. Chan, Eric W. M. Wong, and Yiu-Wing Leung

Journal of Lightwave Technology, Vol. 27, Issue 17, pp. 3948-3958 (2009)


View Full Text Article

Acrobat PDF (551 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Time-domain wavelength interleaved network (TWIN) is an elegant and cost-effective all-optical network designed by a group of researchers in Bell Labs. It emulates fast optical switching via fast tunable lasers at the network edge, so it does not need optical switching and buffering in the network core. TWIN can be upgraded to provide larger capacity by using more receivers at the nodes, where capacity is the aggregate data rate supported by the network. In this paper, we focus on making this upgrade resource-effective. Specifically, we exploit and optimize wavelength reuse so that the resulting network, called high-capacity TWIN (HC-TWIN), can better utilize its available resources to provide larger capacity while retaining the appealing advantages of TWIN. We formulate the problem of optimizing HC-TWIN, prove its NP-hardness, and design an efficient three-stage algorithm to solve it. Simulation results demonstrate that 1) HC-TWIN can provide larger capacity by realizing larger degree of wavelength reuse and 2) the three-stage algorithm can find optimal or close-to-optimal solutions.

© 2009 IEEE

Citation
Tony K. C. Chan, Eric W. M. Wong, and Yiu-Wing Leung, "High-Capacity Time-Domain Wavelength Interleaved Networks," J. Lightwave Technol. 27, 3948-3958 (2009)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-27-17-3948

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited