OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 27, Iss. 19 — Oct. 1, 2009
  • pp: 4221–4227

160 Gb/s Time-Domain Channel Extraction/Insertion and All-Optical Logic Operations Exploiting a Single PPLN Waveguide

Antonella Bogoni, Xiaoxia Wu, Irfan Fazal, and Alan E. Willner

Journal of Lightwave Technology, Vol. 27, Issue 19, pp. 4221-4227 (2009)

View Full Text Article

Acrobat PDF (1160 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


160 Gb/s all-optical signal processing is demonstrated exploiting pump depletion in addition to sum and difference frequency generation (SFG/DFG) in a single periodically poled lithium-niobate (PPLN) waveguide. 160 Gb/s time-domain extraction and insertion operations of channels are obtained in an optical time division multiplexing (OTDM) system. Moreover, 160Gb/s digital operations including half-adder, half-subtracter and and/or/xor functions are carried out. The use of pump depletion effect allows to process ultrafast signals due to its high efficiency and ultrafast dynamics. 160Gb/s bit error rate (BER) measurements confirm the effectiveness of all presented functionalities.

© 2009 IEEE

Antonella Bogoni, Xiaoxia Wu, Irfan Fazal, and Alan E. Willner, "160 Gb/s Time-Domain Channel Extraction/Insertion and All-Optical Logic Operations Exploiting a Single PPLN Waveguide," J. Lightwave Technol. 27, 4221-4227 (2009)

Sort:  Year  |  Journal  |  Reset


  1. E. J. M. Verdurmen, Y. Zhao, E. Tangdiongga, J. P. Turkiewicz, G. D. Khoe, H. de Waardt, "Error-free all-optical add-drop multiplexing using HNLF in a NOLM at 160 Gbit/s," Electron. Lett. 41, 349-350 (2005).
  2. C. Schubert, C. Schmidt, S. Ferber, R. Ludwig, H. G. Weber, "Error-free all-optical add-drop multiplexing at 160 Gbit/s," Electron. Lett. 39, 1074-1076 (2003).
  3. H.-F. Chou, J. E. Bowers, D. J. Blumenthal, "Compact 160-Gb/s add-drop multiplexer with a 40-Gb/s base rate using electroabsorption modulators," IEEE Photon. Technol. Lett. 16, 1564-1566 (2004).
  4. B. E. Olsson, P. A. Andrekson, "Polarization-independent all-optical and-gate using randomly birefringent fiber in a nonlinear optical loop mirror," Proc. OFC (1998) pp. 375-376.
  5. A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini, P. Ghelfi, "Regenerative and reconfigurable all-optical logic gates for ultra-fast applications," Electron. Lett. 41, 435-436 (2005).
  6. K. H. Ahn, X. D. Cao, Y. Liang, B. C. Barnett, S. Chaikamnerd, M. N. Islam, "Cascadability and functionality of all-optical low-birefringent nonlinear optical loop mirror: Experimental demonstration," JOSA-B 14, 1228-1236 (1997).
  7. M. W. Chbat, B. Hong, M. N. Islam, C. E. Soccolich, P. R. Prucnal, "Ultrafast soliton-trapping and gate," J. Lightw. Technol. 10, 2011-2016 (1992).
  8. A. Ibrahim, R. Grover, L. C. Kuo, S. Kanakaraju, L. C. Calhoun, P. T. Ho, "All-optical and/nand logic gates using semiconductor microresonators," IEEE Photon. Technol. Lett. 15, 1422-1424 (2003).
  9. K. E. Stubkjaer, "Semiconductor optical amplifier-based all-optical gates for high-speed optical processing," IEEE J. Sel. Topics Quantum Electron. 6, 1428-1435 (2000).
  10. H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G.-D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, T. Hasama, "All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier," IEEE J. Sel. Topics Quantum Electron. 10, 1079-1092 (2004).
  11. R. P. Webb, R. P. Webb, R. J. Manning, G. D. Maxwell, A. J. Poustie, "40 Gbit/s all-optical xor gate based on hybrid-integrated Mach–Zehnder interferometer," Electron. Lett. 39, 79-81 (2003).
  12. S. Kumar, A. E. Willner, "All optical gate using simultaneous four-wave mixing and cross-gain modulation in an SOA," Proc. LEOS (2004) pp. 913-914.
  13. K. L. Hall, K. A. Rauschenbach, "100-Gbitsbitwise logic," Optics Lett. 23, 1271-1273 (1998).
  14. B. Lu, Y. C. Lu, J. Cheng, M. J. Hafich, J. Klem, J. C. Zolper, "High-speed, cascaded optical logic operations using programmable optical logic gate arrays," IEEE Photon. Technol. Lett. 8, 166-168 (1996).
  15. M. Scaffardi, N. Andriolli, G. Meloni, G. Berrettini, F. Fresi, P. Castoldi, L. Potì, A. Bogoni, "Photonic combinatorial network for contention management in 160 Gb/s interconnection networks based on all-optical 2$\,\times\,$2 switching elements," IEEE J. Sel. Topics Quantum Electron. 13, 1531-1539 (2007).
  16. A. Siahlo, A. T. Clausen, L. K. Oxenlowe, J. Seoane, P. Jeppesen, "640 Gb/s OTDM transmission and demultiplexing using a NOLM with commercially available highly non-linear fiber," Proc. CLEO (2005) pp. 883-885.
  17. G. R. Collecutt, P. D. Drummond, "Digital response in an all optical and gate using parametric $(\chi(2))$ solitons," Proc. CLEO (2000) pp. 194-195.
  18. C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, M. M. Fejer, "All optical signal processing using $\chi 2$ nonlinearities in guided-wave devices," J. Lightw. Technol. 24, 2579-2592 (2006).
  19. C. Liberale, I. Cristiani, V. Degiorgio, M. Marangoni, G. Galzerano, R. Ramponi, "Cross-phase modulation due to a cascade of quadratic interactions in a PPLN waveguide," IEEE J. Sel. Topics Quantum Electron. 12, 405-411 (2006).
  20. H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, I. Yokohama, "All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium-niobate waveguide," IEEE Photon. Technol. Lett. 11, 328-330 (1999).
  21. W. Sohler, W. Grundkotter, H. Herrmann, H. Hu, S. L. Jansen, J. H. Lee, Y. H. Min, V. Quiring, R. Ricken, S. Reza, H. Suche, R. B. Wehrspohn, "All-optical signal processing devices with (periodically poled) lithium-niobate waveguides," Proc. OFC (2007) pp. 1-3.
  22. J. Sun, W. Liu, J. Tian, J. R. Kurz, M. M. Fejer, "Multichannel wavelength conversion exploiting cascaded second-order nonlinearity in LiNbO$_{3}$ waveguides," IEEE Photon. Technol. Lett. 15, 1743-1745 (2003).
  23. Y. Min, J. Lee, Y. Lee, W. Grundkoetter, V. Quiring, W. Sohler, "@@@Tunable all-optical control of wavelength-conversion of 5 ps pulses by cascaded sum-and difference frequency generation (SFG/DFG) in a Ti:PPLN waveguide," Proc. OFC 2003 (2003).
  24. Y. Fukuchi, T. Sakamoto, K. Taira, K. Kikuchi, "All-optical time-division demultiplexing of 160 Gbit/s signal using cascaded second-order nonlinear effect in quasi-phase matched LiNbO$_{3}$ waveguide device," Electron. Lett. 39, (2003).
  25. H. Furukawa, A. Nirmalathas, N. Wada, S. H. Shinada, "Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide," IEEE Photon. Technol. Lett. 19, 384-386 (2007).
  26. I. Brener, B. Mikkelsen, G. Raybon, R. Harel, K. Parameswaran, J. R. Kurz, M. M. Fejer, "160 Gbit/s wavelength shifting and phase conjugation using periodically poled LiNbO$_{3}$ waveguide parametric converter," Electron. Lett. 36, 1788-1789 (2000).
  27. R. L. Jungerman, G. Lee, O. Buccafusca, Y. Kaneko, N. Itagaki, R. Shioda, A. Harada, Y. Nihei, G. Sucha, "1-THz bandwidth C- and L-band optical sampling with a bit rate agile timebase," IEEE Photon. Technol. Lett. 14, 1148-1150 (2002).
  28. J. E. McGeehan, J. E. Mcgeehan, M. Giltrelli, A. E. Willner, "All-optical digital 3-input and gate using sum- and difference-frequency generation in PPLN waveguide," Electron. Lett. 43, (2007).
  29. S. Kumar, A. E. Willner, D. Gurkan, K. R. Parameswaran, M. M. Fejer, "All-optical half adder using an SOA and a PPLN waveguide for signal processing in optical networks," Optics Express 14, (2006).
  30. J. Wang, J. Sun, Q. Sun, "Single-PPLN-based simultaneous half-adder, half-subtracter, and or logic gate: Proposal and simulation," Optics Express 15, (2007).
  31. A. Bogoni, X. Wu, I. Fazal, A. E. Willner, "All-optical 160 Gb/s half-addition half-subtraction and and/or function exploiting pump depletion and nonlinearities in a PPLN waveguide," Proc. ECOC 2008 (2008).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited