OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 27, Iss. 19 — Oct. 1, 2009
  • pp: 4262–4268

FEM Design and Modeling of $\chi^{(2)} $ Second-Harmonic Enhancement in Circular Photonic Crystal

Alessandro Massaro, Vittorianna Tasco, Maria Teresa Todaro, Tiziana Stomeo, Roberto Cingolani, Massimo De Vittorio, and Adriana Passaseo

Journal of Lightwave Technology, Vol. 27, Issue 19, pp. 4262-4268 (2009)

View Full Text Article

Acrobat PDF (1358 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


In this paper, we analyze the enhancement of $\chi^{(2)} $ nonlinear process in membrane-type circular photonic crystal (PhC) based on GaAs. This unconventional kind of PhC is well suited for the generation of whispering gallery modes (WGMs) due to the circular symmetric periodic pattern. By using a laser Gaussian beam at 1.55 $ \mu{\hbox {m}}$ as pump signal, a WGM at 1.55 $ \mu{\hbox {m}}$ and a second-harmonic (SH) mode at 0.775 $ \mu{\hbox {m}}$ are obtained. The SH will be generated in the center of the missing-hole microcavity. The periodic pattern and the microcavity are tailored and optimized providing an SH efficiency conversion as high as 50%. We predict the resonances by an accurate 2-D time-domain model including $\chi^{(2)}$ nonlinearity and by a 3-D finite-element method. Finally, by using a 3-D membrane configuration, we found a total quality factor of the SH mode of the order of 35 000.

© 2009 IEEE

Alessandro Massaro, Vittorianna Tasco, Maria Teresa Todaro, Tiziana Stomeo, Roberto Cingolani, Massimo De Vittorio, and Adriana Passaseo, "FEM Design and Modeling of $\chi^{(2)} $ Second-Harmonic Enhancement in Circular Photonic Crystal," J. Lightwave Technol. 27, 4262-4268 (2009)

Sort:  Year  |  Journal  |  Reset


  1. A. M. Zheltikov, "Limiting efficiencies of second-harmonic generation and cascaded $\chi ^{(2)}$ processes in quadratically nonlinear photonic nanowires," Opt. Comm. 270, 402-406 (2007).
  2. J. I. Dadap, "Optical second-harmonic scattering from cylindrical particles," Phys. Rev. B 78, 205322-1-205322-18 (2008).
  3. S. Boscolo, S. K. Turitsyn, K. J. Blow, "Nonlinear loop mirror-based all-optical signal processing in fiber-optic communications," Opt. Fiber Technol. 14, 299-316 (2008).
  4. J. Trull, C. Cojocaru, R. Fischer, S. Saltiel, K. Staliunas, R. Herrero, R. Vilaseca, D. Neshev, W. Krolikowski, Y. Kivshar, "Second-harmonic parametric scattering in ferroelectric crystals with disordered nonlinear domain structures," Opt. Exp. 15, 15868-15877 (2007).
  5. J. J. Ju, S. K. Park, S. Park, J. Kim, M. Kim, M. Lee, "Wavelength conversion in nonlinear optical polymer waveguides," Appl. Phys. Lett. 88, 241106-1-241106-3 (2006).
  6. N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, B. T. Cunningham, "Enhanced fluorescence emission from quantum dots on a photonic crystal surface," Nature Nanotechnol. 2, 515-520 (2007).
  7. C. Karnutsch, M. Stroisch, M. Punke, U. Lemmer, J. Wang, T. Weimann, "Laser diode-pumped organic semiconductor lasers utilizing two-dimensional photonic crystal resonators," IEEE Photon. Technol. Lett. 19, 741-743 (2007).
  8. A. D'Orazio, M. De Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, "Photonic crystal drop filter exploiting resonant cavity configuration," IEEE Trans. Nanotechnol. 7, 10-13 (2008).
  9. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
  10. T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, A. Scherer, "Quantum dot photonic crystal laser," Electron. Lett. 38, 967-968 (2002).
  11. M. Soljacic, J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nature. 3, 211-219 (2004).
  12. P. T. Lee, T. W. Lu, J. H. Fan, F. M. Tsai, "High quality factor microcavity laser realized by circular photonic crystal with isotropic photonic bandgap effect," Appl. Phys. Lett. 90, 151125-1-151125-3 (2007).
  13. P. A. Postigo, A.R. Alija, L.J. Martíneza, M.L. Dotora, D. Golmayoa, J. Sánchez-Dehesa, C. Seassal, P. Viktorovitch, M. Gallid, A. Politi, M. Patrini, L.C. Andreani, "Laser nanosources based on planar photonic crystal as new platforms for nanophotonics devices," Photon. Nanostruct. 5, 79-85 (2007).
  14. D. Antonucci, D. De Ceglia, A. D. Orazio, M. De Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, "Enhancement of the SHG efficiency in a doubly-resonant 2D-photonic crystal microcavity," Opt. Quantum Electron. 39, 353-360 (2007).
  15. F. F. Ren, R. Li, C. Cheng, H. T. Wang, J. R. Qiu, J. H. Si, K. Hirao, "Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes," Phys. Rev. B 70, 245109-1-245109-4 (2004).
  16. A. Yariv, Quantum Electronics (New York: Wiley, 1988) pp. 116-120.
  17. J. F. Lee, R. Lee, A. Cangellaris, "Time-domain finite-element methods," IEEE Trans. Antennas Propag. 45, 430-442 (1997).
  18. M. A. Alsumaidi, H. M. Masoudi, J. M. Arnold, "A time domain algorithm for the analysis of second-harmonic generation in nonlinear optical structures," IEEE Photon. Technol. Lett. 12, 395-397 (2000).
  19. A. Massaro, V. Errico, T. Stomeo, A. Salhi, R. Cingolani, A. Passaseo, M. D. Vittorio, "3D FEM modeling and fabrication of circular photonic crystal microcavity," J. Lightw. Technol. 26, 2960-2968 (2008).
  20. L. Chen, E. Towe, "Design of high-${Q}$ microcavities for proposed two-dimensional electrically pumped photonic crystal lasers," IEEE J. Sel. Topics Quantum Electron. 12, 117-123 (2006).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited