OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 27, Iss. 19 — Oct. 1, 2009
  • pp: 4330–4337

Two-Dimensional Ferroelectric Photonic Crystal Waveguides: Simulation, Fabrication, and Optical Characterization

Pao Tai Lin, Fei Yi, Seng-Tiong Ho, and Bruce W. Wessels

Journal of Lightwave Technology, Vol. 27, Issue 19, pp. 4330-4337 (2009)

View Full Text Article

Acrobat PDF (1553 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


The optical properties of two dimensional photonic crystal (PhC) waveguides were investigated using ferroelectric barium titanate (BTO) thin films as the optical medium. The photonic band structure was calculated using a 2-D finite difference time domain (FDTD) method; a broad band gap is observed that results from the high refractive index contrast. The simulated transmission spectra indicate the stop band of PhC is mainly determined by three parameters: lattice constant, refractive index contrast, and waveguide mode order. From transmission measurements the PhC with a lattice constant ${a}=420$ nm shows a strong light dispersion and the other PhC with ${a}=450$ nm shows a 120-nm broad stop band. Strong localization of visible light within the PhC cavities is demonstrated from the light scattering images. The observed strong light confinement and its spatial intensity profile due to resonance agree with the calculated profiles. From polarized optical microscopy we discovered the scattered light wavelength was highly sensitive to magnitude of the lattice constant. The optical scattering properties indicate BTO PhC can potentially serve as micrometer size electro-optically tunable switches and color filters.

© 2009 IEEE

Pao Tai Lin, Fei Yi, Seng-Tiong Ho, and Bruce W. Wessels, "Two-Dimensional Ferroelectric Photonic Crystal Waveguides: Simulation, Fabrication, and Optical Characterization," J. Lightwave Technol. 27, 4330-4337 (2009)

Sort:  Year  |  Journal  |  Reset


  1. M. Soljacic, J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nature Mater. 3, 211-219 (2004).
  2. J. B. -Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, M. Soljacic, "Enhanced nonlinear optics in photonic-crystal microcavities," Opt. Exp. 15, 16161-16176 (2007).
  3. A. Jugessur, L. Wu, A. Bakhtazad, A. Kirk, T. Krauss, R. De La Rue, "Compact and integrated 2-D photonic crystal super-prism filter-device for wavelength demultiplexing applications," Opt. Exp. 14, 1632-1642 (2006).
  4. C. Xudong, C. Hafner, R. Vahldieck, "Design of ultra-compact metallo-dielectric photonic crystal filters," Opt. Exp. 13, 6175-6180 (2005).
  5. Y. A. Vlasov, M. O'Boyle, H. F. Hamann, S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005).
  6. T. Sünner, M. Gellner, A. Löffler, M. Kamp, A. Forchel, "Group delay measurements on photonic crystal resonators," Appl. Phys. Lett. 90, (2007) 151117.
  7. J. Li, T. P. White, L. O'Faolain, A. G. Iglesias1, T. F. Krauss1, "Systematic design of flat band slow light in photonic crystal waveguides," Opt. Exp. 16, 6227-6232 (2008).
  8. D. P. Gaillot, E. Graugnard, J. Blair, C. J. Summers, "Dispersion control in two-dimensional superlattice photonic crystal slab waveguides by atomic layer deposition," Appl. Phys. Lett. 91, (2007) 181123.
  9. A. C. Arsenault, T. J. Clark, G. V. Freymann, L. Cademartiri, R. Sapienza, J. Bertolotti, E. Vekris, S. Wong, V. Kitaev, I. Manners, R. Z. Wang, S. John, D. Wiersma, G. A. Ozin, "From colour fingerprinting to the control of photoluminescence in elastic photonic crystals," Nature Mater. 5, 179-184 (2006).
  10. P. C. Mathias, N. L. Ganesh, W. Zhang, B. T. Cunningham, "Graded wavelength one-dimensional photonic crystal reveals spectral characteristics of enhanced fluorescence," J. Appl. Phys. 103, (2008) 094320.
  11. Y. Jiang, W. Jiang, L. Gu, X. Chen, R. T. Chen, "80-micrometer interaction length silicon photonic crystal waveguide modulator," Appl. Phys. Lett. 87, (2005) 221105.
  12. X. Hu, P. Jiang, C. Ding, H. Yang, Q. Gong, "Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity," Nature Photon. 2, 185-189 (2008).
  13. S. T. -Hanic, C. M. de Sterke1, M. J. Steel1, B. J. Eggleton1, Y. Tanaka, S. Noda, "High-Q cavities in multilayer photonic crystal slabs," Opt. Exp. 15, 17248-17253 (2007).
  14. R.-J. Liu, Z.-Y. Li, Z.-F. Feng, B.-Y. Cheng, D.-Z. Zhang, "Channel-drop filters in three-dimensional woodpile photonic crystals," J. Appl. Phys. 103, (2008) 094514.
  15. B. Li, J. Zhou, L. Li, X. J. Wang, X. H. Liu, J. Zi, "Ferroelectric inverse opals with electrically tunable photonic band gap," Appl. Phys. Lett. 83, 4704-4706 (2003).
  16. T. Aoki, M. Kuwabara, M. Kondo, M. Tsukada, K. Kurihara, N. Kamehara, "Micropatterned epitaxial (Pb, La)(Zr, Ti)O $_{3}$ thin films on Nb-doped SrTiO $_{3}$ substrates by a chemical solution deposition process with resist molds," Appl. Phys. Lett. 85, 2580-2582 (2004).
  17. S. Xiong, H. Fukshima, "Analysis of light propagation in index-tunable photonic crystals," J. Appl. Phys. 94, 1286-1288 (2003).
  18. B. H. Hoerman, B. M. Nichols, B. W. Wessels, "Dynamic response of the dielectric and electro-optic properties of epitaxial ferroelectric thin films," Phys. Rev. B 65, 224110 (2002).
  19. P. Tang, D. Towner, T. Hamano, A. Meier, B. Wessels, "Electrooptic modulation up to 40 GHz in a barium titanate thin film waveguide modulator," Opt. Exp. 12, 5962-5967 (2004).
  20. H. Takeda, K. Yoshino, "Tunable photonic band gaps in two-dimensional photonic crystals by temporal modulation based on the pockels effect," Phys. Rev. E 69, (2004) 016605.
  21. X. Hu, Q. Gong, S. Feng, B. Cheng, D. Zhang, "Tunable multichannel filter in nonlinear ferroelectric photonic crystal," Opt. Commun. 253, 138-144 (2005).
  22. H. F. Taylor, "Enhanced electrooptic modulation efficiency utilizing slow-wave optical propagation," J. Lightw. Technol. 17, 1875-1883 (1999).
  23. R. Kim, J. Zhang, O. Eknoyan, H. F. Taylor, T. L. Smith, "Distributed Bragg feedback intensity modulator in Ti:LiNbO$_{3}$," Electron. Lett. 41, 1028-1030 (2005).
  24. R. Kim, J. Zhang, O. Eknoyan, H. F. Taylor, T. L. Smith, "Fabry–Perot intensity modulator with integrated Bragg reflectors in Ti:LiNbO$_{3}$," Electron. Lett. 41, 1220-1222 (2005).
  25. J. B. Khurgin, J. U. Kang, Y. J. Ding, "Ultrabroad-bandwidth electro-optic modulator based on a cascaded Bragg grating," Opt. Lett. 25, 70-72 (2000).
  26. H. A. Lu, L. A. Wills, B. W. Wessels, W. P. Lin, T. G. Zhang, G. K. Wong, D. A. Neumayer, T. J. Marks, "Second-harmonic generation of poled BaTiO$_3$ thin films," Appl. Phys. Lett. 62, 1314-1316 (1993).
  27. P. T. Lin, B. W. Wessels, J. I. Jang, J. B. Ketterson, "Highly efficient broadband second harmonic generation using polydomain epitaxial barium titanate thin film waveguides," Appl. Phys. Lett. 92, (2008) 221103.
  28. B. Li, J. Zhou, L. Li, X. J. Wang, X. H. Liu, J. Zi, "Ferroelectric inverse opals with electrically tunable photonic band gap," Appl. Phys. Lett. 83, 4704-4706 (2003).
  29. A. Peña, S. Di Finizio, T. Trifonov, J. J. Carvajal, M. Aguiló, J. Pallarès, A. Rodriguez, R. Alcubilla, L. F. Marsal, F. Dìaz, J. Martorell, "A two-dimensional KTiOPO $_{4}$ photonic crystal grown using a macroporous silicon template," Adv. Mater. 18, 2220-2225 (2006).
  30. P. T. Lin, B. W. Wessels, A. Imre, L. E. Ocola, Integrated Photonics and Nanophotonics Research and Applications (Opt. Soc. of Amer. , 2008).
  31. S. Madden, B. L. Davies, D. Freeman, "Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam," Opt. Exp. 13, 3079-3086 (2005).
  32. C. Meier, K. Hennessy, "Technique for tilting GaAs photonic crystal nanocavities out of plane," Appl. Phys. Lett. 90, (2007) 143113.
  33. A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  34. L. A. Wills, B. W. Wessels, D. S. Richeson, T. J. Marks, "Epitaxial growth of BaTiO $_{3}$ thin films by organometallic chemical vapor deposition," Appl. Phys. Lett. 60, 41-43 (1992).
  35. P. Tang, D. J. Towner, A. L. Meier, B. W. Wessels, "Low-voltage, polarization-insensitive, electro-optic modulator based on a polydomain barium titanate thin film," Appl. Phys. Lett. 85, 4615-4617 (2004).
  36. Y. Leng, Materials Characterization: Introduction to Microscopic and Spectroscopic Methods (Wiley, 2008) (Wiley, 1).
  37. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2004).
  38. K. Dayal, K. Bhattacharya, "Active tuning of photonic device characteristics by ferroelectric domain switching," J. Appl. Phys. 102, (2007) 064102.
  39. P. T. Lin, Z. Liu, B. W. Wessels, "Ferroelectric thin film photonic crystal waveguide and its electro-optic properties," J. Opt. A: Pure Appl. Opt. 11, 075005 (2009).
  40. A. Berrier, R. Ferrini, A. Talneau, R. Houdré, S. Anand, "Impact of feature-size dependent etching on the optical properties of photonic crystal devices," J. Appl. Phys. 103, (2008) 096106.
  41. C. N. Berglund, H. J. Braun, "Optical absorption in single-domain ferroelectric barium titanate," Phys. Rev. 164, 790-799 (1967).
  42. R. O. Wayne, Light and Video Microscopy (Academic, 2008).
  43. Z. Qiang, H. Yang, L. Chen, H. Pang, Z. Ma, W. Zhou, "Fano filters based on transferred silicon nanomembranes on plastic substrates," Appl. Phys. Lett. 93, (2008) 061106.
  44. T. Paul, C. Rockstuhl, C. Menzel, F. Lederer, "Resonant Goos-Hänchen and Imbert-Fedorov shifts at photonic crystal slabs," Phys. Rev. A 77, (2008) 053802.
  45. O. K. Ersoy, Diffraction, Fourier Optics and Imaging (Wiley-Interscience, 2006).
  46. J. Topolancik, B. Ilic, F. Vollmer, "Experimental observation of strong photon localization in disordered photonic crystal waveguides," Phys. Rev. Lett. 99, (2007) 253901.
  47. Z. Zhang, M. Qiu, "Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs," Opt. Exp. 12, 3988-3995 (2004).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited