OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 27, Iss. 21 — Nov. 1, 2009
  • pp: 4667–4677

Design and Demonstration of Polarizing Polymer Waveguides Using Birefringent Polymers

Mohan Sanghadasa, Paul R. Ashley, Andrew J. Guenthner, Geoffrey A. Lindsay, and Michael D. Bramson

Journal of Lightwave Technology, Vol. 27, Issue 21, pp. 4667-4677 (2009)

View Full Text Article

Acrobat PDF (2946 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


${\rm TE}$-pass and ${\rm TM}$-pass polarizing waveguides were fabricated by adjusting the birefringence properties of multi-layer stacks. The desired values of indices of refraction and birefringence were obtained by the proper selection and customization of core and cladding materials. The technique developed was used in the fabrication of waveguides in various design configurations such as etched ribs, backfilled trenches and photobleached channels. Both passive and active (electro-optic) core materials were successfully used in demonstrating the polarization extinction ratios as high as 61 dB. To our knowledge, this is the highest extinction ratio reported with polarizing polymer waveguides. In the case of electro-optic polymer waveguides, the designs were modified to enhance the electric field strength in the core without compromising the polarizing extinction ratios of the waveguides.

© 2009 IEEE

Mohan Sanghadasa, Paul R. Ashley, Andrew J. Guenthner, Geoffrey A. Lindsay, and Michael D. Bramson, "Design and Demonstration of Polarizing Polymer Waveguides Using Birefringent Polymers," J. Lightwave Technol. 27, 4667-4677 (2009)

Sort:  Year  |  Journal  |  Reset


  1. V. Vali, R. W. Shorthill, "Fiber ring interferometer," Appl. Opt. 15, 1099-1102 (1976).
  2. H. C. Lefevre, Fiber-Optic Gyroscope (Artech House, 1993).
  3. I. P. Kaminow, Am Introduction to Electro-Optic Devices (Academic Press, 1974) pp. 40-53.
  4. R. C. Alferness, "Waveguide electrooptic modulators," IEEE Trans. Microwave Theory Tech. MTT-30, 1121-1137 (1982).
  5. P.-K. Wei, W.-S. Wang, "A ${\rm TE}$-${\rm TM}$ mode splitter on lithium niobate using Ti, Ni, and MgO diffusions," Photon. Technol. Lett. 6, 245-248 (1994).
  6. T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, M. Mansuripur, "Design of a compact photonic-crystal-based polarizing beam splitter," Photon. Technol. Lett. 17, 1435-1437 (2005).
  7. M. Kobayashi, H. Terui, K. Egashira, "An optical waveguide ${\rm TE}$-${\rm TM}$ mode splitter," Appl. Phys. Lett. 32, 300-302 (1978).
  8. I. Kiyat, A. Aydinli, N. Dagli, "A compact silicon-on-insulator polarization splitter," Photon. Technol. Lett. 17, 100-102 (2005).
  9. S. Y. Wang, S. H. Lin, Y. M. Houng, "GaAs traveling-wave polarization electro-optic waveguide modulator with bandwidth in excess of 20 GHz at 1.3 $\mu {\rm m}$," Appl. Phys. Lett. 51, 83-85 (1987).
  10. K. Elyahou, Polarizing Optical Waveguides US Patent Number 4 869 569 (1989).
  11. P. R. Ashley, J. S. Cites, "EO polymer devices for fiber-optics gyros and other applications," OSA Technical Digest Series 14, 196 (1997).
  12. P. R. Ashley, G. A. Lindsay, M. D. Bramson, "Polymer waveguide devices for inertial sensors," Proc. OSA Annual Meeting, OWA2 (2001).
  13. W. M. Diffey, R. H. Trimm, M. G. Temmen, P. R. Ashley, "Fabrication of low-loss optical-quality polymer waveguide facets in multilayer polymer devices using an inductively coupled plasma," J. Lightwave Technol. 23, 1787-1790 (2005).
  14. M. Sanghadasa, P. R. Ashley, E. L. Webster, C. Cocke, G. A. Lindsay, A. J. Guenthner, "A simplified technique for efficient fiber-polymer-waveguide power coupling using a customized cladding with tunable index of refraction," J. Lightwave Technol. 24, 3816-3823 (2006).
  15. M. G. Temmen, P. R. Ashley, "Inertial sensor components using polymer waveguide technology," Proc. SPIE, Sixth Pacific Northwest Fiber Optic Sensor Workshop (2003) pp. 64-71.
  16. P. R. Ashley, M. G. Temmen, W. M. Diffey, M. Sanghadasa, M. D. Bramson, G. A. Lindsay, "Components for IFOG based inertial measurement units using active and passive polymer materials," Proc. SPIE, Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications XII (2006) pp. 63140J-1-11.
  17. P. R. Ashley, M. G. Temmen, W. M. Diffey, M. Sanghadasa, M. D. Bramson, "Development of components for IFOG-based inertial measurement units using polymer waveguide fabrication technologies," Meas. Sci. Technol. 18, 3165-3170 (2007).
  18. J. P. D. Cook, G. O. Este, F. R. Shepherd, W. D. Westwood, J. Arrington, W. Moyer, J. Nurse, S. Powell, "Stable, low-loss optical waveguides and micromirrors fabricated in acrylate polymers," Appl. Opt. 37, 1220-1226 (1998).
  19. Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, W. H. Steier, "Low (sub-1 Volt) halfwave voltage polymeric electrooptic modulators achieved by control of chromophore shape," Science 288, 119-122 (2000).
  20. M.-C. Oh, S.-Y. Shin, W.-Y. Hwang, J.-J. Kim, "Poling-induced waveguide polarizers in electrooptic polymers," Photon. Technol. Lett. 8, 375-377 (1996).
  21. M.-C. Oh, W.-Y. Hwang, J.-J. Kim, "Integrated-optic polarization controlling devices using electro-optic polymers," ETRI Journal 18, 287-299 (1997).
  22. M.-C. Oh, W.-Y. Hwang, K. Kim, "Transverse-electric/transverse-magnetic polarization converter using twisted optic-axis waveguides in poled polymers," Appl. Phys. Lett. 70, 2227-2229 (1997).
  23. S.-S. Lee, S.-W. Ahn, S.-Y. Shin, "Integrated optical waveguide polarizer based on photobleaching-induced birefringence in an electrooptic polymer," Photon. Technol. Lett. 9, 1125-1127 (1997).
  24. S.-S. Lee, S. Garner, A. Chen, V. Chuyanov, W. H. Steier, S.-W. Ahn, S.-Y. Shin, "${\rm TM}$-pass polarizer based on a photobleaching-induced waveguide in polymers," Photon. Technol. Lett. 10, 836-838 (1998).
  25. M.-C. Oh, M.-H. Lee, H.-J. Lee, "Polymeric waveguide polarization splitter with a buried birefringent polymer," Photon. Technol. Lett. 11, 1144-1146 (1999).
  26. G. A. Lindsay, P. R. Ashley, M. C. Davis, A. J. Guenthner, M. Sanghadasa, M. E. Wright, "New photonic and electronic polymers," Mater. Sci. Eng. B 132, 8-11 (2006).
  27. J. Fujita, M. Levy, R. Scarmozzino, R. M. Osgood Jr., L. Eldada, J. T. Yardley, "Integrated multistack waveguide polarizer," Photon. Technol. Lett. 10, 93-95 (1998).
  28. A. Okada, "Lamination of a fluorinated polyimide film on a UV-curable resin film for applications in polarization-controlling waveguide devices," Electron. Lett. 29, 2143-2145 (1997).
  29. R. M. Knox, P. P. Toulios, "Integrated circuits for millimeter through optical frequency range," Proc. MRI Symp. Submillimeter Waves (1970) pp. 497-516.
  30. G. A. Lindsay, A. J. Guenthner, M. E. Wright, M. Sanghadasa, P. R. Ashley, "Multi-month thermal aging of electro-optic polymer waveguides: Synthesis, fabrication, and relaxation modeling," Polymer 48, 6605-6616 (2007).
  31. A. J. Guenthner, G. A. Lindsay, P. Zarras, S. Fallis, J. M. Pentony, W. N. Herman, "Methods for estimating the refractive index profile at near infrared wavelengths of polymers for optical waveguides," Proc. SPIE, Linear and Nonlinear Optics of Organic Materials II (2002) pp. 184-194.
  32. J. Bicerano, Prediction of Polymer Properties (Marcel Dekker, 2002) pp. 301-310.
  33. D. E. Bornside, C. W. Macosko, L. E. Scriven, "On the modeling of spin-coating," J. Imaging Technol. 13, 122-130 (1987).
  34. M. Dabral, X. Xia, W. W. Gerberich, L. F. Francis, L. E. Scriven, "Near-surface structure formation in chemically imidized polyimide films," J. Polym. Sci. Part B: Polym. Phys. 39, 1824-1838 (2001).
  35. B. Li, T. He, M. Ding, "Correlation between chain conformations and optical anisotropy of thin films of an organo-soluble polyimide," Polymer 38, 6413-6416 (1997).
  36. M. Ree, T. J. Shin, Y.-H. Park, S. I. Kim, S. H. Woo, C. K. Choi, C. E. Park, "Residual stress and optical properties of fully rod-like poly(p-phenylene pyromellitimide) in thin films: Effects of soft-bake and thermal imidization history," J. Polym. Sci. Part B: Polym. Phys. 36, 1261-1273 (1998).
  37. L. Lin, S. A. Bidstrup, "Processing effects on optical anisotropy in spin-coated polyimide films," J. Appl. Polym. Sci. 49, 1277-1289 (1993).
  38. T. P. Russell, J. D. Swalen, "In-plane orientation of polyimides," J. Polym. Sci. Polym. Phys. Ed. 21, 1745-1756 (1983).
  39. J. C. Coburn, M. T. Potinger, Polyimides: Fundamentals and Applications (Marcel Dekker, 1996) pp. 207-248.
  40. A. J. Guenthner, G. A. Lindsay, K. R. Davis, L. Steinmetz, J. M. Pentony, "Effect of processing conditions on the properties of polyimide films in optical waveguides," Proc. SPIE, Linear and Nonlinear Optics of Organic Materials III (2003) pp. 100-107.
  41. A. J. Guenthner, K. R. Davis, L. Steinmetz, J. M. Pentony, "Effect of processing parameters on the properties of solvent-cast polyimides for optical waveguides," ACS Symposium Series, New Developments in Coatings Technology (2004) pp. 146-161.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited